L(s) = 1 | + (−0.309 + 0.951i)2-s + (1.61 − 1.17i)3-s + (−0.809 − 0.587i)4-s + (−0.927 − 2.85i)5-s + (0.618 + 1.90i)6-s + (−1.61 − 1.17i)7-s + (0.809 − 0.587i)8-s + (0.309 − 0.951i)9-s + 3·10-s − 1.99·12-s + (1.54 − 4.75i)13-s + (1.61 − 1.17i)14-s + (−4.85 − 3.52i)15-s + (0.309 + 0.951i)16-s + (0.927 + 2.85i)17-s + (0.809 + 0.587i)18-s + ⋯ |
L(s) = 1 | + (−0.218 + 0.672i)2-s + (0.934 − 0.678i)3-s + (−0.404 − 0.293i)4-s + (−0.414 − 1.27i)5-s + (0.252 + 0.776i)6-s + (−0.611 − 0.444i)7-s + (0.286 − 0.207i)8-s + (0.103 − 0.317i)9-s + 0.948·10-s − 0.577·12-s + (0.428 − 1.31i)13-s + (0.432 − 0.314i)14-s + (−1.25 − 0.910i)15-s + (0.0772 + 0.237i)16-s + (0.224 + 0.691i)17-s + (0.190 + 0.138i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 242 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.569 + 0.821i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 242 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.569 + 0.821i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.09728 - 0.574375i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.09728 - 0.574375i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.309 - 0.951i)T \) |
| 11 | \( 1 \) |
good | 3 | \( 1 + (-1.61 + 1.17i)T + (0.927 - 2.85i)T^{2} \) |
| 5 | \( 1 + (0.927 + 2.85i)T + (-4.04 + 2.93i)T^{2} \) |
| 7 | \( 1 + (1.61 + 1.17i)T + (2.16 + 6.65i)T^{2} \) |
| 13 | \( 1 + (-1.54 + 4.75i)T + (-10.5 - 7.64i)T^{2} \) |
| 17 | \( 1 + (-0.927 - 2.85i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (1.61 - 1.17i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 - 6T + 23T^{2} \) |
| 29 | \( 1 + (-2.42 - 1.76i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (-0.618 + 1.90i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (-5.66 - 4.11i)T + (11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (2.42 - 1.76i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 - 8T + 43T^{2} \) |
| 47 | \( 1 + (4.85 - 3.52i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (0.927 - 2.85i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (3.09 + 9.51i)T + (-49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 + 10T + 67T^{2} \) |
| 71 | \( 1 + (-3.70 - 11.4i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (11.3 + 8.22i)T + (22.5 + 69.4i)T^{2} \) |
| 79 | \( 1 + (-0.618 + 1.90i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (-5.56 - 17.1i)T + (-67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 + 9T + 89T^{2} \) |
| 97 | \( 1 + (-3.39 + 10.4i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.60426506948221592419126148965, −10.87000390706814095140951885474, −9.695149450344399683858396994860, −8.588938550827578541108014141959, −8.188033518576273104278529650265, −7.28187233239260741006861859948, −5.97696950691101633349299936609, −4.68008457292347442633523580797, −3.23824814617746230217302769454, −1.07364684214427608672879501506,
2.59562551821258857432076017640, 3.31070054625562170052799106450, 4.39474687977864471170163300652, 6.38278746680469916040113733310, 7.41226580833992240746447230703, 8.829131455003375304749990800841, 9.313240735370638168373232394813, 10.31211947663617314709116299253, 11.20478207099626948228831151918, 11.98170269501486016538769541541