Properties

Label 2-242-11.9-c1-0-6
Degree $2$
Conductor $242$
Sign $0.569 + 0.821i$
Analytic cond. $1.93237$
Root an. cond. $1.39010$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.309 + 0.951i)2-s + (1.61 − 1.17i)3-s + (−0.809 − 0.587i)4-s + (−0.927 − 2.85i)5-s + (0.618 + 1.90i)6-s + (−1.61 − 1.17i)7-s + (0.809 − 0.587i)8-s + (0.309 − 0.951i)9-s + 3·10-s − 1.99·12-s + (1.54 − 4.75i)13-s + (1.61 − 1.17i)14-s + (−4.85 − 3.52i)15-s + (0.309 + 0.951i)16-s + (0.927 + 2.85i)17-s + (0.809 + 0.587i)18-s + ⋯
L(s)  = 1  + (−0.218 + 0.672i)2-s + (0.934 − 0.678i)3-s + (−0.404 − 0.293i)4-s + (−0.414 − 1.27i)5-s + (0.252 + 0.776i)6-s + (−0.611 − 0.444i)7-s + (0.286 − 0.207i)8-s + (0.103 − 0.317i)9-s + 0.948·10-s − 0.577·12-s + (0.428 − 1.31i)13-s + (0.432 − 0.314i)14-s + (−1.25 − 0.910i)15-s + (0.0772 + 0.237i)16-s + (0.224 + 0.691i)17-s + (0.190 + 0.138i)18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 242 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.569 + 0.821i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 242 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.569 + 0.821i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(242\)    =    \(2 \cdot 11^{2}\)
Sign: $0.569 + 0.821i$
Analytic conductor: \(1.93237\)
Root analytic conductor: \(1.39010\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{242} (9, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 242,\ (\ :1/2),\ 0.569 + 0.821i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.09728 - 0.574375i\)
\(L(\frac12)\) \(\approx\) \(1.09728 - 0.574375i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.309 - 0.951i)T \)
11 \( 1 \)
good3 \( 1 + (-1.61 + 1.17i)T + (0.927 - 2.85i)T^{2} \)
5 \( 1 + (0.927 + 2.85i)T + (-4.04 + 2.93i)T^{2} \)
7 \( 1 + (1.61 + 1.17i)T + (2.16 + 6.65i)T^{2} \)
13 \( 1 + (-1.54 + 4.75i)T + (-10.5 - 7.64i)T^{2} \)
17 \( 1 + (-0.927 - 2.85i)T + (-13.7 + 9.99i)T^{2} \)
19 \( 1 + (1.61 - 1.17i)T + (5.87 - 18.0i)T^{2} \)
23 \( 1 - 6T + 23T^{2} \)
29 \( 1 + (-2.42 - 1.76i)T + (8.96 + 27.5i)T^{2} \)
31 \( 1 + (-0.618 + 1.90i)T + (-25.0 - 18.2i)T^{2} \)
37 \( 1 + (-5.66 - 4.11i)T + (11.4 + 35.1i)T^{2} \)
41 \( 1 + (2.42 - 1.76i)T + (12.6 - 38.9i)T^{2} \)
43 \( 1 - 8T + 43T^{2} \)
47 \( 1 + (4.85 - 3.52i)T + (14.5 - 44.6i)T^{2} \)
53 \( 1 + (0.927 - 2.85i)T + (-42.8 - 31.1i)T^{2} \)
59 \( 1 + (18.2 + 56.1i)T^{2} \)
61 \( 1 + (3.09 + 9.51i)T + (-49.3 + 35.8i)T^{2} \)
67 \( 1 + 10T + 67T^{2} \)
71 \( 1 + (-3.70 - 11.4i)T + (-57.4 + 41.7i)T^{2} \)
73 \( 1 + (11.3 + 8.22i)T + (22.5 + 69.4i)T^{2} \)
79 \( 1 + (-0.618 + 1.90i)T + (-63.9 - 46.4i)T^{2} \)
83 \( 1 + (-5.56 - 17.1i)T + (-67.1 + 48.7i)T^{2} \)
89 \( 1 + 9T + 89T^{2} \)
97 \( 1 + (-3.39 + 10.4i)T + (-78.4 - 57.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.60426506948221592419126148965, −10.87000390706814095140951885474, −9.695149450344399683858396994860, −8.588938550827578541108014141959, −8.188033518576273104278529650265, −7.28187233239260741006861859948, −5.97696950691101633349299936609, −4.68008457292347442633523580797, −3.23824814617746230217302769454, −1.07364684214427608672879501506, 2.59562551821258857432076017640, 3.31070054625562170052799106450, 4.39474687977864471170163300652, 6.38278746680469916040113733310, 7.41226580833992240746447230703, 8.829131455003375304749990800841, 9.313240735370638168373232394813, 10.31211947663617314709116299253, 11.20478207099626948228831151918, 11.98170269501486016538769541541

Graph of the $Z$-function along the critical line