Properties

Label 242.2.c.e.9.1
Level $242$
Weight $2$
Character 242.9
Analytic conductor $1.932$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [242,2,Mod(3,242)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("242.3"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(242, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 242 = 2 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 242.c (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,1,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.93237972891\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 9.1
Root \(-0.309017 - 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 242.9
Dual form 242.2.c.e.27.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.309017 + 0.951057i) q^{2} +(1.61803 - 1.17557i) q^{3} +(-0.809017 - 0.587785i) q^{4} +(-0.927051 - 2.85317i) q^{5} +(0.618034 + 1.90211i) q^{6} +(-1.61803 - 1.17557i) q^{7} +(0.809017 - 0.587785i) q^{8} +(0.309017 - 0.951057i) q^{9} +3.00000 q^{10} -2.00000 q^{12} +(1.54508 - 4.75528i) q^{13} +(1.61803 - 1.17557i) q^{14} +(-4.85410 - 3.52671i) q^{15} +(0.309017 + 0.951057i) q^{16} +(0.927051 + 2.85317i) q^{17} +(0.809017 + 0.587785i) q^{18} +(-1.61803 + 1.17557i) q^{19} +(-0.927051 + 2.85317i) q^{20} -4.00000 q^{21} +6.00000 q^{23} +(0.618034 - 1.90211i) q^{24} +(-3.23607 + 2.35114i) q^{25} +(4.04508 + 2.93893i) q^{26} +(1.23607 + 3.80423i) q^{27} +(0.618034 + 1.90211i) q^{28} +(2.42705 + 1.76336i) q^{29} +(4.85410 - 3.52671i) q^{30} +(0.618034 - 1.90211i) q^{31} -1.00000 q^{32} -3.00000 q^{34} +(-1.85410 + 5.70634i) q^{35} +(-0.809017 + 0.587785i) q^{36} +(5.66312 + 4.11450i) q^{37} +(-0.618034 - 1.90211i) q^{38} +(-3.09017 - 9.51057i) q^{39} +(-2.42705 - 1.76336i) q^{40} +(-2.42705 + 1.76336i) q^{41} +(1.23607 - 3.80423i) q^{42} +8.00000 q^{43} -3.00000 q^{45} +(-1.85410 + 5.70634i) q^{46} +(-4.85410 + 3.52671i) q^{47} +(1.61803 + 1.17557i) q^{48} +(-0.927051 - 2.85317i) q^{49} +(-1.23607 - 3.80423i) q^{50} +(4.85410 + 3.52671i) q^{51} +(-4.04508 + 2.93893i) q^{52} +(-0.927051 + 2.85317i) q^{53} -4.00000 q^{54} -2.00000 q^{56} +(-1.23607 + 3.80423i) q^{57} +(-2.42705 + 1.76336i) q^{58} +(1.85410 + 5.70634i) q^{60} +(-3.09017 - 9.51057i) q^{61} +(1.61803 + 1.17557i) q^{62} +(-1.61803 + 1.17557i) q^{63} +(0.309017 - 0.951057i) q^{64} -15.0000 q^{65} -10.0000 q^{67} +(0.927051 - 2.85317i) q^{68} +(9.70820 - 7.05342i) q^{69} +(-4.85410 - 3.52671i) q^{70} +(3.70820 + 11.4127i) q^{71} +(-0.309017 - 0.951057i) q^{72} +(-11.3262 - 8.22899i) q^{73} +(-5.66312 + 4.11450i) q^{74} +(-2.47214 + 7.60845i) q^{75} +2.00000 q^{76} +10.0000 q^{78} +(0.618034 - 1.90211i) q^{79} +(2.42705 - 1.76336i) q^{80} +(8.89919 + 6.46564i) q^{81} +(-0.927051 - 2.85317i) q^{82} +(5.56231 + 17.1190i) q^{83} +(3.23607 + 2.35114i) q^{84} +(7.28115 - 5.29007i) q^{85} +(-2.47214 + 7.60845i) q^{86} +6.00000 q^{87} -9.00000 q^{89} +(0.927051 - 2.85317i) q^{90} +(-8.09017 + 5.87785i) q^{91} +(-4.85410 - 3.52671i) q^{92} +(-1.23607 - 3.80423i) q^{93} +(-1.85410 - 5.70634i) q^{94} +(4.85410 + 3.52671i) q^{95} +(-1.61803 + 1.17557i) q^{96} +(3.39919 - 10.4616i) q^{97} +3.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} + 2 q^{3} - q^{4} + 3 q^{5} - 2 q^{6} - 2 q^{7} + q^{8} - q^{9} + 12 q^{10} - 8 q^{12} - 5 q^{13} + 2 q^{14} - 6 q^{15} - q^{16} - 3 q^{17} + q^{18} - 2 q^{19} + 3 q^{20} - 16 q^{21} + 24 q^{23}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/242\mathbb{Z}\right)^\times\).

\(n\) \(123\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.309017 + 0.951057i −0.218508 + 0.672499i
\(3\) 1.61803 1.17557i 0.934172 0.678716i −0.0128385 0.999918i \(-0.504087\pi\)
0.947011 + 0.321202i \(0.104087\pi\)
\(4\) −0.809017 0.587785i −0.404508 0.293893i
\(5\) −0.927051 2.85317i −0.414590 1.27598i −0.912617 0.408815i \(-0.865942\pi\)
0.498027 0.867161i \(-0.334058\pi\)
\(6\) 0.618034 + 1.90211i 0.252311 + 0.776534i
\(7\) −1.61803 1.17557i −0.611559 0.444324i 0.238404 0.971166i \(-0.423376\pi\)
−0.849963 + 0.526842i \(0.823376\pi\)
\(8\) 0.809017 0.587785i 0.286031 0.207813i
\(9\) 0.309017 0.951057i 0.103006 0.317019i
\(10\) 3.00000 0.948683
\(11\) 0 0
\(12\) −2.00000 −0.577350
\(13\) 1.54508 4.75528i 0.428529 1.31888i −0.471044 0.882109i \(-0.656123\pi\)
0.899574 0.436769i \(-0.143877\pi\)
\(14\) 1.61803 1.17557i 0.432438 0.314184i
\(15\) −4.85410 3.52671i −1.25332 0.910593i
\(16\) 0.309017 + 0.951057i 0.0772542 + 0.237764i
\(17\) 0.927051 + 2.85317i 0.224843 + 0.691995i 0.998308 + 0.0581558i \(0.0185220\pi\)
−0.773465 + 0.633839i \(0.781478\pi\)
\(18\) 0.809017 + 0.587785i 0.190687 + 0.138542i
\(19\) −1.61803 + 1.17557i −0.371202 + 0.269694i −0.757709 0.652592i \(-0.773682\pi\)
0.386507 + 0.922287i \(0.373682\pi\)
\(20\) −0.927051 + 2.85317i −0.207295 + 0.637988i
\(21\) −4.00000 −0.872872
\(22\) 0 0
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0.618034 1.90211i 0.126156 0.388267i
\(25\) −3.23607 + 2.35114i −0.647214 + 0.470228i
\(26\) 4.04508 + 2.93893i 0.793306 + 0.576371i
\(27\) 1.23607 + 3.80423i 0.237881 + 0.732124i
\(28\) 0.618034 + 1.90211i 0.116797 + 0.359466i
\(29\) 2.42705 + 1.76336i 0.450692 + 0.327447i 0.789869 0.613276i \(-0.210149\pi\)
−0.339177 + 0.940723i \(0.610149\pi\)
\(30\) 4.85410 3.52671i 0.886234 0.643886i
\(31\) 0.618034 1.90211i 0.111002 0.341630i −0.880090 0.474807i \(-0.842518\pi\)
0.991092 + 0.133177i \(0.0425179\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −3.00000 −0.514496
\(35\) −1.85410 + 5.70634i −0.313400 + 0.964547i
\(36\) −0.809017 + 0.587785i −0.134836 + 0.0979642i
\(37\) 5.66312 + 4.11450i 0.931011 + 0.676419i 0.946240 0.323465i \(-0.104848\pi\)
−0.0152291 + 0.999884i \(0.504848\pi\)
\(38\) −0.618034 1.90211i −0.100258 0.308563i
\(39\) −3.09017 9.51057i −0.494823 1.52291i
\(40\) −2.42705 1.76336i −0.383750 0.278811i
\(41\) −2.42705 + 1.76336i −0.379042 + 0.275390i −0.760950 0.648810i \(-0.775267\pi\)
0.381909 + 0.924200i \(0.375267\pi\)
\(42\) 1.23607 3.80423i 0.190729 0.587005i
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 0 0
\(45\) −3.00000 −0.447214
\(46\) −1.85410 + 5.70634i −0.273372 + 0.841354i
\(47\) −4.85410 + 3.52671i −0.708044 + 0.514424i −0.882542 0.470234i \(-0.844170\pi\)
0.174498 + 0.984657i \(0.444170\pi\)
\(48\) 1.61803 + 1.17557i 0.233543 + 0.169679i
\(49\) −0.927051 2.85317i −0.132436 0.407596i
\(50\) −1.23607 3.80423i −0.174806 0.537999i
\(51\) 4.85410 + 3.52671i 0.679710 + 0.493838i
\(52\) −4.04508 + 2.93893i −0.560952 + 0.407556i
\(53\) −0.927051 + 2.85317i −0.127340 + 0.391913i −0.994320 0.106430i \(-0.966058\pi\)
0.866980 + 0.498343i \(0.166058\pi\)
\(54\) −4.00000 −0.544331
\(55\) 0 0
\(56\) −2.00000 −0.267261
\(57\) −1.23607 + 3.80423i −0.163721 + 0.503882i
\(58\) −2.42705 + 1.76336i −0.318687 + 0.231540i
\(59\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(60\) 1.85410 + 5.70634i 0.239364 + 0.736685i
\(61\) −3.09017 9.51057i −0.395656 1.21770i −0.928450 0.371458i \(-0.878858\pi\)
0.532794 0.846245i \(-0.321142\pi\)
\(62\) 1.61803 + 1.17557i 0.205491 + 0.149298i
\(63\) −1.61803 + 1.17557i −0.203853 + 0.148108i
\(64\) 0.309017 0.951057i 0.0386271 0.118882i
\(65\) −15.0000 −1.86052
\(66\) 0 0
\(67\) −10.0000 −1.22169 −0.610847 0.791748i \(-0.709171\pi\)
−0.610847 + 0.791748i \(0.709171\pi\)
\(68\) 0.927051 2.85317i 0.112421 0.345998i
\(69\) 9.70820 7.05342i 1.16873 0.849132i
\(70\) −4.85410 3.52671i −0.580176 0.421523i
\(71\) 3.70820 + 11.4127i 0.440083 + 1.35444i 0.887787 + 0.460254i \(0.152242\pi\)
−0.447704 + 0.894182i \(0.647758\pi\)
\(72\) −0.309017 0.951057i −0.0364180 0.112083i
\(73\) −11.3262 8.22899i −1.32564 0.963131i −0.999844 0.0176895i \(-0.994369\pi\)
−0.325792 0.945441i \(-0.605631\pi\)
\(74\) −5.66312 + 4.11450i −0.658324 + 0.478301i
\(75\) −2.47214 + 7.60845i −0.285458 + 0.878548i
\(76\) 2.00000 0.229416
\(77\) 0 0
\(78\) 10.0000 1.13228
\(79\) 0.618034 1.90211i 0.0695343 0.214004i −0.910251 0.414057i \(-0.864111\pi\)
0.979785 + 0.200053i \(0.0641114\pi\)
\(80\) 2.42705 1.76336i 0.271353 0.197149i
\(81\) 8.89919 + 6.46564i 0.988799 + 0.718404i
\(82\) −0.927051 2.85317i −0.102376 0.315080i
\(83\) 5.56231 + 17.1190i 0.610542 + 1.87906i 0.452904 + 0.891559i \(0.350388\pi\)
0.157639 + 0.987497i \(0.449612\pi\)
\(84\) 3.23607 + 2.35114i 0.353084 + 0.256531i
\(85\) 7.28115 5.29007i 0.789752 0.573788i
\(86\) −2.47214 + 7.60845i −0.266577 + 0.820440i
\(87\) 6.00000 0.643268
\(88\) 0 0
\(89\) −9.00000 −0.953998 −0.476999 0.878904i \(-0.658275\pi\)
−0.476999 + 0.878904i \(0.658275\pi\)
\(90\) 0.927051 2.85317i 0.0977198 0.300750i
\(91\) −8.09017 + 5.87785i −0.848080 + 0.616166i
\(92\) −4.85410 3.52671i −0.506075 0.367685i
\(93\) −1.23607 3.80423i −0.128174 0.394480i
\(94\) −1.85410 5.70634i −0.191236 0.588564i
\(95\) 4.85410 + 3.52671i 0.498020 + 0.361833i
\(96\) −1.61803 + 1.17557i −0.165140 + 0.119981i
\(97\) 3.39919 10.4616i 0.345135 1.06222i −0.616376 0.787452i \(-0.711400\pi\)
0.961511 0.274765i \(-0.0886000\pi\)
\(98\) 3.00000 0.303046
\(99\) 0 0
\(100\) 4.00000 0.400000
\(101\) 1.85410 5.70634i 0.184490 0.567802i −0.815449 0.578829i \(-0.803510\pi\)
0.999939 + 0.0110267i \(0.00350999\pi\)
\(102\) −4.85410 + 3.52671i −0.480628 + 0.349196i
\(103\) −6.47214 4.70228i −0.637719 0.463330i 0.221347 0.975195i \(-0.428955\pi\)
−0.859066 + 0.511865i \(0.828955\pi\)
\(104\) −1.54508 4.75528i −0.151508 0.466294i
\(105\) 3.70820 + 11.4127i 0.361884 + 1.11376i
\(106\) −2.42705 1.76336i −0.235736 0.171272i
\(107\) 4.85410 3.52671i 0.469264 0.340940i −0.327891 0.944716i \(-0.606338\pi\)
0.797154 + 0.603776i \(0.206338\pi\)
\(108\) 1.23607 3.80423i 0.118941 0.366062i
\(109\) 17.0000 1.62830 0.814152 0.580651i \(-0.197202\pi\)
0.814152 + 0.580651i \(0.197202\pi\)
\(110\) 0 0
\(111\) 14.0000 1.32882
\(112\) 0.618034 1.90211i 0.0583987 0.179733i
\(113\) 7.28115 5.29007i 0.684953 0.497648i −0.190044 0.981776i \(-0.560863\pi\)
0.874997 + 0.484128i \(0.160863\pi\)
\(114\) −3.23607 2.35114i −0.303086 0.220205i
\(115\) −5.56231 17.1190i −0.518688 1.59636i
\(116\) −0.927051 2.85317i −0.0860745 0.264910i
\(117\) −4.04508 2.93893i −0.373968 0.271704i
\(118\) 0 0
\(119\) 1.85410 5.70634i 0.169965 0.523099i
\(120\) −6.00000 −0.547723
\(121\) 0 0
\(122\) 10.0000 0.905357
\(123\) −1.85410 + 5.70634i −0.167179 + 0.514523i
\(124\) −1.61803 + 1.17557i −0.145304 + 0.105569i
\(125\) −2.42705 1.76336i −0.217082 0.157719i
\(126\) −0.618034 1.90211i −0.0550588 0.169454i
\(127\) 2.47214 + 7.60845i 0.219367 + 0.675141i 0.998815 + 0.0486742i \(0.0154996\pi\)
−0.779448 + 0.626467i \(0.784500\pi\)
\(128\) 0.809017 + 0.587785i 0.0715077 + 0.0519534i
\(129\) 12.9443 9.40456i 1.13968 0.828026i
\(130\) 4.63525 14.2658i 0.406539 1.25120i
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 4.00000 0.346844
\(134\) 3.09017 9.51057i 0.266950 0.821588i
\(135\) 9.70820 7.05342i 0.835549 0.607062i
\(136\) 2.42705 + 1.76336i 0.208118 + 0.151207i
\(137\) 1.85410 + 5.70634i 0.158407 + 0.487525i 0.998490 0.0549317i \(-0.0174941\pi\)
−0.840083 + 0.542457i \(0.817494\pi\)
\(138\) 3.70820 + 11.4127i 0.315663 + 0.971512i
\(139\) 17.7984 + 12.9313i 1.50964 + 1.09682i 0.966337 + 0.257279i \(0.0828258\pi\)
0.543301 + 0.839538i \(0.317174\pi\)
\(140\) 4.85410 3.52671i 0.410246 0.298062i
\(141\) −3.70820 + 11.4127i −0.312287 + 0.961121i
\(142\) −12.0000 −1.00702
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) 2.78115 8.55951i 0.230962 0.710829i
\(146\) 11.3262 8.22899i 0.937366 0.681036i
\(147\) −4.85410 3.52671i −0.400360 0.290878i
\(148\) −2.16312 6.65740i −0.177807 0.547235i
\(149\) −0.927051 2.85317i −0.0759470 0.233741i 0.905875 0.423545i \(-0.139215\pi\)
−0.981822 + 0.189805i \(0.939215\pi\)
\(150\) −6.47214 4.70228i −0.528448 0.383940i
\(151\) −6.47214 + 4.70228i −0.526695 + 0.382666i −0.819120 0.573622i \(-0.805538\pi\)
0.292425 + 0.956288i \(0.405538\pi\)
\(152\) −0.618034 + 1.90211i −0.0501292 + 0.154282i
\(153\) 3.00000 0.242536
\(154\) 0 0
\(155\) −6.00000 −0.481932
\(156\) −3.09017 + 9.51057i −0.247412 + 0.761455i
\(157\) −1.61803 + 1.17557i −0.129133 + 0.0938207i −0.650477 0.759526i \(-0.725431\pi\)
0.521344 + 0.853347i \(0.325431\pi\)
\(158\) 1.61803 + 1.17557i 0.128724 + 0.0935234i
\(159\) 1.85410 + 5.70634i 0.147040 + 0.452542i
\(160\) 0.927051 + 2.85317i 0.0732898 + 0.225563i
\(161\) −9.70820 7.05342i −0.765114 0.555888i
\(162\) −8.89919 + 6.46564i −0.699186 + 0.507988i
\(163\) −6.79837 + 20.9232i −0.532490 + 1.63883i 0.216522 + 0.976278i \(0.430529\pi\)
−0.749011 + 0.662557i \(0.769471\pi\)
\(164\) 3.00000 0.234261
\(165\) 0 0
\(166\) −18.0000 −1.39707
\(167\) −3.70820 + 11.4127i −0.286949 + 0.883140i 0.698858 + 0.715260i \(0.253692\pi\)
−0.985808 + 0.167879i \(0.946308\pi\)
\(168\) −3.23607 + 2.35114i −0.249668 + 0.181394i
\(169\) −9.70820 7.05342i −0.746785 0.542571i
\(170\) 2.78115 + 8.55951i 0.213305 + 0.656484i
\(171\) 0.618034 + 1.90211i 0.0472622 + 0.145458i
\(172\) −6.47214 4.70228i −0.493496 0.358546i
\(173\) −4.85410 + 3.52671i −0.369051 + 0.268131i −0.756817 0.653627i \(-0.773247\pi\)
0.387767 + 0.921758i \(0.373247\pi\)
\(174\) −1.85410 + 5.70634i −0.140559 + 0.432596i
\(175\) 8.00000 0.604743
\(176\) 0 0
\(177\) 0 0
\(178\) 2.78115 8.55951i 0.208456 0.641562i
\(179\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(180\) 2.42705 + 1.76336i 0.180902 + 0.131433i
\(181\) 1.54508 + 4.75528i 0.114845 + 0.353457i 0.991915 0.126906i \(-0.0405047\pi\)
−0.877069 + 0.480364i \(0.840505\pi\)
\(182\) −3.09017 9.51057i −0.229059 0.704970i
\(183\) −16.1803 11.7557i −1.19609 0.869007i
\(184\) 4.85410 3.52671i 0.357849 0.259993i
\(185\) 6.48936 19.9722i 0.477107 1.46838i
\(186\) 4.00000 0.293294
\(187\) 0 0
\(188\) 6.00000 0.437595
\(189\) 2.47214 7.60845i 0.179821 0.553433i
\(190\) −4.85410 + 3.52671i −0.352154 + 0.255855i
\(191\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(192\) −0.618034 1.90211i −0.0446028 0.137273i
\(193\) −4.01722 12.3637i −0.289166 0.889961i −0.985119 0.171874i \(-0.945018\pi\)
0.695953 0.718087i \(-0.254982\pi\)
\(194\) 8.89919 + 6.46564i 0.638924 + 0.464206i
\(195\) −24.2705 + 17.6336i −1.73805 + 1.26277i
\(196\) −0.927051 + 2.85317i −0.0662179 + 0.203798i
\(197\) −15.0000 −1.06871 −0.534353 0.845262i \(-0.679445\pi\)
−0.534353 + 0.845262i \(0.679445\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) −1.23607 + 3.80423i −0.0874032 + 0.268999i
\(201\) −16.1803 + 11.7557i −1.14127 + 0.829184i
\(202\) 4.85410 + 3.52671i 0.341533 + 0.248139i
\(203\) −1.85410 5.70634i −0.130132 0.400506i
\(204\) −1.85410 5.70634i −0.129813 0.399524i
\(205\) 7.28115 + 5.29007i 0.508538 + 0.369474i
\(206\) 6.47214 4.70228i 0.450935 0.327624i
\(207\) 1.85410 5.70634i 0.128869 0.396618i
\(208\) 5.00000 0.346688
\(209\) 0 0
\(210\) −12.0000 −0.828079
\(211\) −1.23607 + 3.80423i −0.0850944 + 0.261894i −0.984546 0.175127i \(-0.943966\pi\)
0.899451 + 0.437021i \(0.143966\pi\)
\(212\) 2.42705 1.76336i 0.166691 0.121108i
\(213\) 19.4164 + 14.1068i 1.33039 + 0.966585i
\(214\) 1.85410 + 5.70634i 0.126744 + 0.390077i
\(215\) −7.41641 22.8254i −0.505795 1.55668i
\(216\) 3.23607 + 2.35114i 0.220187 + 0.159975i
\(217\) −3.23607 + 2.35114i −0.219679 + 0.159606i
\(218\) −5.25329 + 16.1680i −0.355798 + 1.09503i
\(219\) −28.0000 −1.89206
\(220\) 0 0
\(221\) 15.0000 1.00901
\(222\) −4.32624 + 13.3148i −0.290358 + 0.893630i
\(223\) 3.23607 2.35114i 0.216703 0.157444i −0.474138 0.880450i \(-0.657240\pi\)
0.690841 + 0.723006i \(0.257240\pi\)
\(224\) 1.61803 + 1.17557i 0.108109 + 0.0785461i
\(225\) 1.23607 + 3.80423i 0.0824045 + 0.253615i
\(226\) 2.78115 + 8.55951i 0.185000 + 0.569370i
\(227\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(228\) 3.23607 2.35114i 0.214314 0.155708i
\(229\) 1.54508 4.75528i 0.102102 0.314238i −0.886937 0.461890i \(-0.847172\pi\)
0.989039 + 0.147652i \(0.0471715\pi\)
\(230\) 18.0000 1.18688
\(231\) 0 0
\(232\) 3.00000 0.196960
\(233\) −6.48936 + 19.9722i −0.425132 + 1.30842i 0.477736 + 0.878503i \(0.341458\pi\)
−0.902868 + 0.429918i \(0.858542\pi\)
\(234\) 4.04508 2.93893i 0.264435 0.192124i
\(235\) 14.5623 + 10.5801i 0.949940 + 0.690172i
\(236\) 0 0
\(237\) −1.23607 3.80423i −0.0802912 0.247111i
\(238\) 4.85410 + 3.52671i 0.314645 + 0.228603i
\(239\) 24.2705 17.6336i 1.56993 1.14062i 0.642704 0.766115i \(-0.277812\pi\)
0.927225 0.374505i \(-0.122188\pi\)
\(240\) 1.85410 5.70634i 0.119682 0.368343i
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) 0 0
\(243\) 10.0000 0.641500
\(244\) −3.09017 + 9.51057i −0.197828 + 0.608852i
\(245\) −7.28115 + 5.29007i −0.465176 + 0.337970i
\(246\) −4.85410 3.52671i −0.309486 0.224855i
\(247\) 3.09017 + 9.51057i 0.196623 + 0.605143i
\(248\) −0.618034 1.90211i −0.0392452 0.120784i
\(249\) 29.1246 + 21.1603i 1.84570 + 1.34098i
\(250\) 2.42705 1.76336i 0.153500 0.111524i
\(251\) 5.56231 17.1190i 0.351090 1.08054i −0.607153 0.794585i \(-0.707688\pi\)
0.958242 0.285958i \(-0.0923116\pi\)
\(252\) 2.00000 0.125988
\(253\) 0 0
\(254\) −8.00000 −0.501965
\(255\) 5.56231 17.1190i 0.348325 1.07203i
\(256\) −0.809017 + 0.587785i −0.0505636 + 0.0367366i
\(257\) −2.42705 1.76336i −0.151395 0.109995i 0.509509 0.860465i \(-0.329827\pi\)
−0.660904 + 0.750470i \(0.729827\pi\)
\(258\) 4.94427 + 15.2169i 0.307817 + 0.947363i
\(259\) −4.32624 13.3148i −0.268819 0.827341i
\(260\) 12.1353 + 8.81678i 0.752597 + 0.546793i
\(261\) 2.42705 1.76336i 0.150231 0.109149i
\(262\) 0 0
\(263\) 6.00000 0.369976 0.184988 0.982741i \(-0.440775\pi\)
0.184988 + 0.982741i \(0.440775\pi\)
\(264\) 0 0
\(265\) 9.00000 0.552866
\(266\) −1.23607 + 3.80423i −0.0757882 + 0.233252i
\(267\) −14.5623 + 10.5801i −0.891199 + 0.647494i
\(268\) 8.09017 + 5.87785i 0.494186 + 0.359047i
\(269\) −0.927051 2.85317i −0.0565233 0.173961i 0.918809 0.394702i \(-0.129152\pi\)
−0.975332 + 0.220742i \(0.929152\pi\)
\(270\) 3.70820 + 11.4127i 0.225674 + 0.694553i
\(271\) −16.1803 11.7557i −0.982886 0.714108i −0.0245340 0.999699i \(-0.507810\pi\)
−0.958352 + 0.285591i \(0.907810\pi\)
\(272\) −2.42705 + 1.76336i −0.147162 + 0.106919i
\(273\) −6.18034 + 19.0211i −0.374051 + 1.15121i
\(274\) −6.00000 −0.362473
\(275\) 0 0
\(276\) −12.0000 −0.722315
\(277\) 1.54508 4.75528i 0.0928352 0.285717i −0.893848 0.448370i \(-0.852005\pi\)
0.986683 + 0.162652i \(0.0520049\pi\)
\(278\) −17.7984 + 12.9313i −1.06748 + 0.775566i
\(279\) −1.61803 1.17557i −0.0968692 0.0703796i
\(280\) 1.85410 + 5.70634i 0.110804 + 0.341019i
\(281\) 1.85410 + 5.70634i 0.110606 + 0.340412i 0.991005 0.133822i \(-0.0427251\pi\)
−0.880399 + 0.474234i \(0.842725\pi\)
\(282\) −9.70820 7.05342i −0.578115 0.420025i
\(283\) −16.1803 + 11.7557i −0.961821 + 0.698804i −0.953573 0.301162i \(-0.902626\pi\)
−0.00824833 + 0.999966i \(0.502626\pi\)
\(284\) 3.70820 11.4127i 0.220041 0.677218i
\(285\) 12.0000 0.710819
\(286\) 0 0
\(287\) 6.00000 0.354169
\(288\) −0.309017 + 0.951057i −0.0182090 + 0.0560415i
\(289\) 6.47214 4.70228i 0.380714 0.276605i
\(290\) 7.28115 + 5.29007i 0.427564 + 0.310643i
\(291\) −6.79837 20.9232i −0.398528 1.22654i
\(292\) 4.32624 + 13.3148i 0.253174 + 0.779189i
\(293\) −16.9894 12.3435i −0.992529 0.721114i −0.0320554 0.999486i \(-0.510205\pi\)
−0.960473 + 0.278372i \(0.910205\pi\)
\(294\) 4.85410 3.52671i 0.283097 0.205682i
\(295\) 0 0
\(296\) 7.00000 0.406867
\(297\) 0 0
\(298\) 3.00000 0.173785
\(299\) 9.27051 28.5317i 0.536127 1.65003i
\(300\) 6.47214 4.70228i 0.373669 0.271486i
\(301\) −12.9443 9.40456i −0.746095 0.542070i
\(302\) −2.47214 7.60845i −0.142255 0.437817i
\(303\) −3.70820 11.4127i −0.213031 0.655641i
\(304\) −1.61803 1.17557i −0.0928006 0.0674236i
\(305\) −24.2705 + 17.6336i −1.38973 + 1.00969i
\(306\) −0.927051 + 2.85317i −0.0529960 + 0.163105i
\(307\) −10.0000 −0.570730 −0.285365 0.958419i \(-0.592115\pi\)
−0.285365 + 0.958419i \(0.592115\pi\)
\(308\) 0 0
\(309\) −16.0000 −0.910208
\(310\) 1.85410 5.70634i 0.105306 0.324098i
\(311\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(312\) −8.09017 5.87785i −0.458016 0.332768i
\(313\) −0.309017 0.951057i −0.0174667 0.0537569i 0.941943 0.335772i \(-0.108997\pi\)
−0.959410 + 0.282015i \(0.908997\pi\)
\(314\) −0.618034 1.90211i −0.0348777 0.107342i
\(315\) 4.85410 + 3.52671i 0.273498 + 0.198708i
\(316\) −1.61803 + 1.17557i −0.0910215 + 0.0661310i
\(317\) −5.56231 + 17.1190i −0.312410 + 0.961500i 0.664397 + 0.747380i \(0.268688\pi\)
−0.976807 + 0.214120i \(0.931312\pi\)
\(318\) −6.00000 −0.336463
\(319\) 0 0
\(320\) −3.00000 −0.167705
\(321\) 3.70820 11.4127i 0.206972 0.636994i
\(322\) 9.70820 7.05342i 0.541017 0.393072i
\(323\) −4.85410 3.52671i −0.270089 0.196231i
\(324\) −3.39919 10.4616i −0.188844 0.581201i
\(325\) 6.18034 + 19.0211i 0.342824 + 1.05510i
\(326\) −17.7984 12.9313i −0.985761 0.716197i
\(327\) 27.5066 19.9847i 1.52112 1.10516i
\(328\) −0.927051 + 2.85317i −0.0511878 + 0.157540i
\(329\) 12.0000 0.661581
\(330\) 0 0
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) 5.56231 17.1190i 0.305271 0.939528i
\(333\) 5.66312 4.11450i 0.310337 0.225473i
\(334\) −9.70820 7.05342i −0.531209 0.385946i
\(335\) 9.27051 + 28.5317i 0.506502 + 1.55885i
\(336\) −1.23607 3.80423i −0.0674330 0.207538i
\(337\) 10.5172 + 7.64121i 0.572910 + 0.416243i 0.836161 0.548484i \(-0.184795\pi\)
−0.263251 + 0.964727i \(0.584795\pi\)
\(338\) 9.70820 7.05342i 0.528057 0.383656i
\(339\) 5.56231 17.1190i 0.302103 0.929777i
\(340\) −9.00000 −0.488094
\(341\) 0 0
\(342\) −2.00000 −0.108148
\(343\) −6.18034 + 19.0211i −0.333707 + 1.02704i
\(344\) 6.47214 4.70228i 0.348954 0.253530i
\(345\) −29.1246 21.1603i −1.56802 1.13923i
\(346\) −1.85410 5.70634i −0.0996771 0.306775i
\(347\) 11.1246 + 34.2380i 0.597200 + 1.83799i 0.543453 + 0.839439i \(0.317117\pi\)
0.0537472 + 0.998555i \(0.482883\pi\)
\(348\) −4.85410 3.52671i −0.260207 0.189052i
\(349\) −13.7533 + 9.99235i −0.736197 + 0.534878i −0.891518 0.452986i \(-0.850359\pi\)
0.155321 + 0.987864i \(0.450359\pi\)
\(350\) −2.47214 + 7.60845i −0.132141 + 0.406689i
\(351\) 20.0000 1.06752
\(352\) 0 0
\(353\) −9.00000 −0.479022 −0.239511 0.970894i \(-0.576987\pi\)
−0.239511 + 0.970894i \(0.576987\pi\)
\(354\) 0 0
\(355\) 29.1246 21.1603i 1.54577 1.12307i
\(356\) 7.28115 + 5.29007i 0.385900 + 0.280373i
\(357\) −3.70820 11.4127i −0.196259 0.604023i
\(358\) 0 0
\(359\) −14.5623 10.5801i −0.768569 0.558398i 0.132958 0.991122i \(-0.457553\pi\)
−0.901527 + 0.432724i \(0.857553\pi\)
\(360\) −2.42705 + 1.76336i −0.127917 + 0.0929370i
\(361\) −4.63525 + 14.2658i −0.243961 + 0.750834i
\(362\) −5.00000 −0.262794
\(363\) 0 0
\(364\) 10.0000 0.524142
\(365\) −12.9787 + 39.9444i −0.679337 + 2.09078i
\(366\) 16.1803 11.7557i 0.845760 0.614481i
\(367\) 8.09017 + 5.87785i 0.422303 + 0.306821i 0.778564 0.627565i \(-0.215948\pi\)
−0.356261 + 0.934387i \(0.615948\pi\)
\(368\) 1.85410 + 5.70634i 0.0966517 + 0.297463i
\(369\) 0.927051 + 2.85317i 0.0482603 + 0.148530i
\(370\) 16.9894 + 12.3435i 0.883235 + 0.641708i
\(371\) 4.85410 3.52671i 0.252012 0.183098i
\(372\) −1.23607 + 3.80423i −0.0640871 + 0.197240i
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 0 0
\(375\) −6.00000 −0.309839
\(376\) −1.85410 + 5.70634i −0.0956180 + 0.294282i
\(377\) 12.1353 8.81678i 0.624997 0.454087i
\(378\) 6.47214 + 4.70228i 0.332891 + 0.241859i
\(379\) −4.94427 15.2169i −0.253970 0.781640i −0.994031 0.109100i \(-0.965203\pi\)
0.740061 0.672540i \(-0.234797\pi\)
\(380\) −1.85410 5.70634i −0.0951134 0.292729i
\(381\) 12.9443 + 9.40456i 0.663155 + 0.481810i
\(382\) 0 0
\(383\) 3.70820 11.4127i 0.189480 0.583161i −0.810516 0.585716i \(-0.800813\pi\)
0.999997 + 0.00255538i \(0.000813402\pi\)
\(384\) 2.00000 0.102062
\(385\) 0 0
\(386\) 13.0000 0.661683
\(387\) 2.47214 7.60845i 0.125666 0.386759i
\(388\) −8.89919 + 6.46564i −0.451788 + 0.328243i
\(389\) −26.6976 19.3969i −1.35362 0.983463i −0.998822 0.0485195i \(-0.984550\pi\)
−0.354798 0.934943i \(-0.615450\pi\)
\(390\) −9.27051 28.5317i −0.469431 1.44476i
\(391\) 5.56231 + 17.1190i 0.281298 + 0.865746i
\(392\) −2.42705 1.76336i −0.122585 0.0890629i
\(393\) 0 0
\(394\) 4.63525 14.2658i 0.233521 0.718703i
\(395\) −6.00000 −0.301893
\(396\) 0 0
\(397\) 17.0000 0.853206 0.426603 0.904439i \(-0.359710\pi\)
0.426603 + 0.904439i \(0.359710\pi\)
\(398\) 4.94427 15.2169i 0.247834 0.762754i
\(399\) 6.47214 4.70228i 0.324012 0.235409i
\(400\) −3.23607 2.35114i −0.161803 0.117557i
\(401\) −10.1976 31.3849i −0.509242 1.56729i −0.793520 0.608544i \(-0.791754\pi\)
0.284279 0.958742i \(-0.408246\pi\)
\(402\) −6.18034 19.0211i −0.308247 0.948688i
\(403\) −8.09017 5.87785i −0.403000 0.292797i
\(404\) −4.85410 + 3.52671i −0.241501 + 0.175460i
\(405\) 10.1976 31.3849i 0.506721 1.55953i
\(406\) 6.00000 0.297775
\(407\) 0 0
\(408\) 6.00000 0.297044
\(409\) −4.01722 + 12.3637i −0.198639 + 0.611347i 0.801276 + 0.598295i \(0.204155\pi\)
−0.999915 + 0.0130525i \(0.995845\pi\)
\(410\) −7.28115 + 5.29007i −0.359591 + 0.261258i
\(411\) 9.70820 + 7.05342i 0.478870 + 0.347920i
\(412\) 2.47214 + 7.60845i 0.121793 + 0.374842i
\(413\) 0 0
\(414\) 4.85410 + 3.52671i 0.238566 + 0.173328i
\(415\) 43.6869 31.7404i 2.14451 1.55808i
\(416\) −1.54508 + 4.75528i −0.0757540 + 0.233147i
\(417\) 44.0000 2.15469
\(418\) 0 0
\(419\) −18.0000 −0.879358 −0.439679 0.898155i \(-0.644908\pi\)
−0.439679 + 0.898155i \(0.644908\pi\)
\(420\) 3.70820 11.4127i 0.180942 0.556882i
\(421\) −13.7533 + 9.99235i −0.670294 + 0.486997i −0.870124 0.492833i \(-0.835961\pi\)
0.199829 + 0.979831i \(0.435961\pi\)
\(422\) −3.23607 2.35114i −0.157529 0.114452i
\(423\) 1.85410 + 5.70634i 0.0901495 + 0.277452i
\(424\) 0.927051 + 2.85317i 0.0450216 + 0.138562i
\(425\) −9.70820 7.05342i −0.470917 0.342141i
\(426\) −19.4164 + 14.1068i −0.940728 + 0.683479i
\(427\) −6.18034 + 19.0211i −0.299088 + 0.920497i
\(428\) −6.00000 −0.290021
\(429\) 0 0
\(430\) 24.0000 1.15738
\(431\) 11.1246 34.2380i 0.535854 1.64919i −0.205944 0.978564i \(-0.566026\pi\)
0.741797 0.670624i \(-0.233974\pi\)
\(432\) −3.23607 + 2.35114i −0.155695 + 0.113119i
\(433\) 29.9336 + 21.7481i 1.43852 + 1.04514i 0.988350 + 0.152201i \(0.0486362\pi\)
0.450169 + 0.892943i \(0.351364\pi\)
\(434\) −1.23607 3.80423i −0.0593332 0.182609i
\(435\) −5.56231 17.1190i −0.266692 0.820794i
\(436\) −13.7533 9.99235i −0.658663 0.478547i
\(437\) −9.70820 + 7.05342i −0.464406 + 0.337411i
\(438\) 8.65248 26.6296i 0.413431 1.27241i
\(439\) −22.0000 −1.05000 −0.525001 0.851101i \(-0.675935\pi\)
−0.525001 + 0.851101i \(0.675935\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) −4.63525 + 14.2658i −0.220477 + 0.678557i
\(443\) −29.1246 + 21.1603i −1.38375 + 1.00535i −0.387234 + 0.921982i \(0.626569\pi\)
−0.996518 + 0.0833731i \(0.973431\pi\)
\(444\) −11.3262 8.22899i −0.537519 0.390531i
\(445\) 8.34346 + 25.6785i 0.395518 + 1.21728i
\(446\) 1.23607 + 3.80423i 0.0585295 + 0.180135i
\(447\) −4.85410 3.52671i −0.229591 0.166808i
\(448\) −1.61803 + 1.17557i −0.0764449 + 0.0555405i
\(449\) −6.48936 + 19.9722i −0.306252 + 0.942546i 0.672955 + 0.739683i \(0.265025\pi\)
−0.979207 + 0.202863i \(0.934975\pi\)
\(450\) −4.00000 −0.188562
\(451\) 0 0
\(452\) −9.00000 −0.423324
\(453\) −4.94427 + 15.2169i −0.232302 + 0.714953i
\(454\) 0 0
\(455\) 24.2705 + 17.6336i 1.13782 + 0.826674i
\(456\) 1.23607 + 3.80423i 0.0578842 + 0.178149i
\(457\) −0.309017 0.951057i −0.0144552 0.0444885i 0.943569 0.331177i \(-0.107446\pi\)
−0.958024 + 0.286688i \(0.907446\pi\)
\(458\) 4.04508 + 2.93893i 0.189014 + 0.137327i
\(459\) −9.70820 + 7.05342i −0.453140 + 0.329226i
\(460\) −5.56231 + 17.1190i −0.259344 + 0.798178i
\(461\) 21.0000 0.978068 0.489034 0.872265i \(-0.337349\pi\)
0.489034 + 0.872265i \(0.337349\pi\)
\(462\) 0 0
\(463\) −4.00000 −0.185896 −0.0929479 0.995671i \(-0.529629\pi\)
−0.0929479 + 0.995671i \(0.529629\pi\)
\(464\) −0.927051 + 2.85317i −0.0430373 + 0.132455i
\(465\) −9.70820 + 7.05342i −0.450207 + 0.327095i
\(466\) −16.9894 12.3435i −0.787017 0.571801i
\(467\) −3.70820 11.4127i −0.171595 0.528116i 0.827866 0.560925i \(-0.189555\pi\)
−0.999462 + 0.0328096i \(0.989555\pi\)
\(468\) 1.54508 + 4.75528i 0.0714216 + 0.219813i
\(469\) 16.1803 + 11.7557i 0.747139 + 0.542828i
\(470\) −14.5623 + 10.5801i −0.671709 + 0.488025i
\(471\) −1.23607 + 3.80423i −0.0569550 + 0.175289i
\(472\) 0 0
\(473\) 0 0
\(474\) 4.00000 0.183726
\(475\) 2.47214 7.60845i 0.113429 0.349100i
\(476\) −4.85410 + 3.52671i −0.222487 + 0.161647i
\(477\) 2.42705 + 1.76336i 0.111127 + 0.0807385i
\(478\) 9.27051 + 28.5317i 0.424023 + 1.30501i
\(479\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(480\) 4.85410 + 3.52671i 0.221558 + 0.160972i
\(481\) 28.3156 20.5725i 1.29108 0.938025i
\(482\) 3.09017 9.51057i 0.140753 0.433194i
\(483\) −24.0000 −1.09204
\(484\) 0 0
\(485\) −33.0000 −1.49845
\(486\) −3.09017 + 9.51057i −0.140173 + 0.431408i
\(487\) 27.5066 19.9847i 1.24644 0.905593i 0.248432 0.968649i \(-0.420085\pi\)
0.998010 + 0.0630562i \(0.0200847\pi\)
\(488\) −8.09017 5.87785i −0.366225 0.266078i
\(489\) 13.5967 + 41.8465i 0.614866 + 1.89236i
\(490\) −2.78115 8.55951i −0.125640 0.386679i
\(491\) 24.2705 + 17.6336i 1.09531 + 0.795791i 0.980289 0.197571i \(-0.0633054\pi\)
0.115024 + 0.993363i \(0.463305\pi\)
\(492\) 4.85410 3.52671i 0.218840 0.158996i
\(493\) −2.78115 + 8.55951i −0.125257 + 0.385501i
\(494\) −10.0000 −0.449921
\(495\) 0 0
\(496\) 2.00000 0.0898027
\(497\) 7.41641 22.8254i 0.332671 1.02386i
\(498\) −29.1246 + 21.1603i −1.30511 + 0.948214i
\(499\) 12.9443 + 9.40456i 0.579465 + 0.421006i 0.838531 0.544853i \(-0.183415\pi\)
−0.259066 + 0.965860i \(0.583415\pi\)
\(500\) 0.927051 + 2.85317i 0.0414590 + 0.127598i
\(501\) 7.41641 + 22.8254i 0.331341 + 1.01976i
\(502\) 14.5623 + 10.5801i 0.649948 + 0.472215i
\(503\) −24.2705 + 17.6336i −1.08217 + 0.786241i −0.978060 0.208324i \(-0.933199\pi\)
−0.104109 + 0.994566i \(0.533199\pi\)
\(504\) −0.618034 + 1.90211i −0.0275294 + 0.0847268i
\(505\) −18.0000 −0.800989
\(506\) 0 0
\(507\) −24.0000 −1.06588
\(508\) 2.47214 7.60845i 0.109683 0.337570i
\(509\) −4.85410 + 3.52671i −0.215154 + 0.156319i −0.690143 0.723673i \(-0.742452\pi\)
0.474988 + 0.879992i \(0.342452\pi\)
\(510\) 14.5623 + 10.5801i 0.644830 + 0.468496i
\(511\) 8.65248 + 26.6296i 0.382763 + 1.17802i
\(512\) −0.309017 0.951057i −0.0136568 0.0420312i
\(513\) −6.47214 4.70228i −0.285752 0.207611i
\(514\) 2.42705 1.76336i 0.107053 0.0777783i
\(515\) −7.41641 + 22.8254i −0.326806 + 1.00581i
\(516\) −16.0000 −0.704361
\(517\) 0 0
\(518\) 14.0000 0.615125
\(519\) −3.70820 + 11.4127i −0.162772 + 0.500961i
\(520\) −12.1353 + 8.81678i −0.532166 + 0.386641i
\(521\) 14.5623 + 10.5801i 0.637986 + 0.463524i 0.859158 0.511711i \(-0.170988\pi\)
−0.221172 + 0.975235i \(0.570988\pi\)
\(522\) 0.927051 + 2.85317i 0.0405759 + 0.124880i
\(523\) −4.94427 15.2169i −0.216198 0.665389i −0.999066 0.0432015i \(-0.986244\pi\)
0.782868 0.622187i \(-0.213756\pi\)
\(524\) 0 0
\(525\) 12.9443 9.40456i 0.564934 0.410449i
\(526\) −1.85410 + 5.70634i −0.0808427 + 0.248808i
\(527\) 6.00000 0.261364
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) −2.78115 + 8.55951i −0.120806 + 0.371801i
\(531\) 0 0
\(532\) −3.23607 2.35114i −0.140301 0.101935i
\(533\) 4.63525 + 14.2658i 0.200775 + 0.617922i
\(534\) −5.56231 17.1190i −0.240705 0.740812i
\(535\) −14.5623 10.5801i −0.629583 0.457419i
\(536\) −8.09017 + 5.87785i −0.349442 + 0.253885i
\(537\) 0 0
\(538\) 3.00000 0.129339
\(539\) 0 0
\(540\) −12.0000 −0.516398
\(541\) 0.618034 1.90211i 0.0265714 0.0817782i −0.936891 0.349620i \(-0.886311\pi\)
0.963463 + 0.267842i \(0.0863106\pi\)
\(542\) 16.1803 11.7557i 0.695005 0.504951i
\(543\) 8.09017 + 5.87785i 0.347182 + 0.252243i
\(544\) −0.927051 2.85317i −0.0397470 0.122329i
\(545\) −15.7599 48.5039i −0.675079 2.07768i
\(546\) −16.1803 11.7557i −0.692455 0.503098i
\(547\) −6.47214 + 4.70228i −0.276729 + 0.201055i −0.717489 0.696570i \(-0.754709\pi\)
0.440761 + 0.897625i \(0.354709\pi\)
\(548\) 1.85410 5.70634i 0.0792033 0.243763i
\(549\) −10.0000 −0.426790
\(550\) 0 0
\(551\) −6.00000 −0.255609
\(552\) 3.70820 11.4127i 0.157832 0.485756i
\(553\) −3.23607 + 2.35114i −0.137612 + 0.0999807i
\(554\) 4.04508 + 2.93893i 0.171859 + 0.124863i
\(555\) −12.9787 39.9444i −0.550916 1.69554i
\(556\) −6.79837 20.9232i −0.288315 0.887343i
\(557\) 14.5623 + 10.5801i 0.617025 + 0.448295i 0.851881 0.523735i \(-0.175462\pi\)
−0.234856 + 0.972030i \(0.575462\pi\)
\(558\) 1.61803 1.17557i 0.0684968 0.0497659i
\(559\) 12.3607 38.0423i 0.522801 1.60902i
\(560\) −6.00000 −0.253546
\(561\) 0 0
\(562\) −6.00000 −0.253095
\(563\) −12.9787 + 39.9444i −0.546988 + 1.68345i 0.169229 + 0.985577i \(0.445872\pi\)
−0.716217 + 0.697878i \(0.754128\pi\)
\(564\) 9.70820 7.05342i 0.408789 0.297003i
\(565\) −21.8435 15.8702i −0.918961 0.667664i
\(566\) −6.18034 19.0211i −0.259779 0.799518i
\(567\) −6.79837 20.9232i −0.285505 0.878694i
\(568\) 9.70820 + 7.05342i 0.407347 + 0.295955i
\(569\) −4.85410 + 3.52671i −0.203495 + 0.147847i −0.684865 0.728670i \(-0.740139\pi\)
0.481371 + 0.876517i \(0.340139\pi\)
\(570\) −3.70820 + 11.4127i −0.155320 + 0.478024i
\(571\) −10.0000 −0.418487 −0.209243 0.977864i \(-0.567100\pi\)
−0.209243 + 0.977864i \(0.567100\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −1.85410 + 5.70634i −0.0773887 + 0.238178i
\(575\) −19.4164 + 14.1068i −0.809720 + 0.588296i
\(576\) −0.809017 0.587785i −0.0337090 0.0244911i
\(577\) 3.39919 + 10.4616i 0.141510 + 0.435523i 0.996546 0.0830461i \(-0.0264649\pi\)
−0.855036 + 0.518569i \(0.826465\pi\)
\(578\) 2.47214 + 7.60845i 0.102827 + 0.316470i
\(579\) −21.0344 15.2824i −0.874162 0.635116i
\(580\) −7.28115 + 5.29007i −0.302333 + 0.219658i
\(581\) 11.1246 34.2380i 0.461527 1.42043i
\(582\) 22.0000 0.911929
\(583\) 0 0
\(584\) −14.0000 −0.579324
\(585\) −4.63525 + 14.2658i −0.191644 + 0.589820i
\(586\) 16.9894 12.3435i 0.701824 0.509905i
\(587\) 14.5623 + 10.5801i 0.601051 + 0.436689i 0.846252 0.532783i \(-0.178854\pi\)
−0.245201 + 0.969472i \(0.578854\pi\)
\(588\) 1.85410 + 5.70634i 0.0764619 + 0.235325i
\(589\) 1.23607 + 3.80423i 0.0509313 + 0.156750i
\(590\) 0 0
\(591\) −24.2705 + 17.6336i −0.998355 + 0.725348i
\(592\) −2.16312 + 6.65740i −0.0889036 + 0.273617i
\(593\) 27.0000 1.10876 0.554379 0.832265i \(-0.312956\pi\)
0.554379 + 0.832265i \(0.312956\pi\)
\(594\) 0 0
\(595\) −18.0000 −0.737928
\(596\) −0.927051 + 2.85317i −0.0379735 + 0.116870i
\(597\) −25.8885 + 18.8091i −1.05955 + 0.769806i
\(598\) 24.2705 + 17.6336i 0.992495 + 0.721090i
\(599\) −12.9787 39.9444i −0.530296 1.63208i −0.753599 0.657334i \(-0.771684\pi\)
0.223304 0.974749i \(-0.428316\pi\)
\(600\) 2.47214 + 7.60845i 0.100925 + 0.310614i
\(601\) 10.5172 + 7.64121i 0.429006 + 0.311691i 0.781251 0.624216i \(-0.214582\pi\)
−0.352245 + 0.935908i \(0.614582\pi\)
\(602\) 12.9443 9.40456i 0.527569 0.383301i
\(603\) −3.09017 + 9.51057i −0.125841 + 0.387300i
\(604\) 8.00000 0.325515
\(605\) 0 0
\(606\) 12.0000 0.487467
\(607\) −6.79837 + 20.9232i −0.275937 + 0.849248i 0.713032 + 0.701131i \(0.247321\pi\)
−0.988970 + 0.148117i \(0.952679\pi\)
\(608\) 1.61803 1.17557i 0.0656199 0.0476757i
\(609\) −9.70820 7.05342i −0.393396 0.285819i
\(610\) −9.27051 28.5317i −0.375352 1.15521i
\(611\) 9.27051 + 28.5317i 0.375045 + 1.15427i
\(612\) −2.42705 1.76336i −0.0981077 0.0712794i
\(613\) −4.04508 + 2.93893i −0.163379 + 0.118702i −0.666471 0.745531i \(-0.732196\pi\)
0.503091 + 0.864233i \(0.332196\pi\)
\(614\) 3.09017 9.51057i 0.124709 0.383815i
\(615\) 18.0000 0.725830
\(616\) 0 0
\(617\) 39.0000 1.57008 0.785040 0.619445i \(-0.212642\pi\)
0.785040 + 0.619445i \(0.212642\pi\)
\(618\) 4.94427 15.2169i 0.198888 0.612114i
\(619\) 8.09017 5.87785i 0.325171 0.236251i −0.413208 0.910637i \(-0.635592\pi\)
0.738379 + 0.674386i \(0.235592\pi\)
\(620\) 4.85410 + 3.52671i 0.194945 + 0.141636i
\(621\) 7.41641 + 22.8254i 0.297610 + 0.915950i
\(622\) 0 0
\(623\) 14.5623 + 10.5801i 0.583426 + 0.423884i
\(624\) 8.09017 5.87785i 0.323866 0.235302i
\(625\) −8.96149 + 27.5806i −0.358460 + 1.10323i
\(626\) 1.00000 0.0399680
\(627\) 0 0
\(628\) 2.00000 0.0798087
\(629\) −6.48936 + 19.9722i −0.258748 + 0.796343i
\(630\) −4.85410 + 3.52671i −0.193392 + 0.140508i
\(631\) −30.7426 22.3358i −1.22385 0.889176i −0.227432 0.973794i \(-0.573033\pi\)
−0.996413 + 0.0846182i \(0.973033\pi\)
\(632\) −0.618034 1.90211i −0.0245841 0.0756620i
\(633\) 2.47214 + 7.60845i 0.0982586 + 0.302409i
\(634\) −14.5623 10.5801i −0.578343 0.420191i
\(635\) 19.4164 14.1068i 0.770517 0.559813i
\(636\) 1.85410 5.70634i 0.0735199 0.226271i
\(637\) −15.0000 −0.594322
\(638\) 0 0
\(639\) 12.0000 0.474713
\(640\) 0.927051 2.85317i 0.0366449 0.112781i
\(641\) 26.6976 19.3969i 1.05449 0.766132i 0.0814291 0.996679i \(-0.474052\pi\)
0.973061 + 0.230547i \(0.0740516\pi\)
\(642\) 9.70820 + 7.05342i 0.383152 + 0.278376i
\(643\) 0.618034 + 1.90211i 0.0243729 + 0.0750120i 0.962503 0.271271i \(-0.0874438\pi\)
−0.938130 + 0.346283i \(0.887444\pi\)
\(644\) 3.70820 + 11.4127i 0.146124 + 0.449723i
\(645\) −38.8328 28.2137i −1.52904 1.11091i
\(646\) 4.85410 3.52671i 0.190982 0.138757i
\(647\) −3.70820 + 11.4127i −0.145785 + 0.448679i −0.997111 0.0759575i \(-0.975799\pi\)
0.851327 + 0.524636i \(0.175799\pi\)
\(648\) 11.0000 0.432121
\(649\) 0 0
\(650\) −20.0000 −0.784465
\(651\) −2.47214 + 7.60845i −0.0968906 + 0.298199i
\(652\) 17.7984 12.9313i 0.697038 0.506428i
\(653\) −14.5623 10.5801i −0.569867 0.414033i 0.265190 0.964196i \(-0.414565\pi\)
−0.835057 + 0.550164i \(0.814565\pi\)
\(654\) 10.5066 + 32.3359i 0.410840 + 1.26443i
\(655\) 0 0
\(656\) −2.42705 1.76336i −0.0947604 0.0688475i
\(657\) −11.3262 + 8.22899i −0.441879 + 0.321044i
\(658\) −3.70820 + 11.4127i −0.144561 + 0.444913i
\(659\) −6.00000 −0.233727 −0.116863 0.993148i \(-0.537284\pi\)
−0.116863 + 0.993148i \(0.537284\pi\)
\(660\) 0 0
\(661\) 17.0000 0.661223 0.330612 0.943767i \(-0.392745\pi\)
0.330612 + 0.943767i \(0.392745\pi\)
\(662\) −6.18034 + 19.0211i −0.240206 + 0.739277i
\(663\) 24.2705 17.6336i 0.942588 0.684831i
\(664\) 14.5623 + 10.5801i 0.565127 + 0.410589i
\(665\) −3.70820 11.4127i −0.143798 0.442565i
\(666\) 2.16312 + 6.65740i 0.0838192 + 0.257969i
\(667\) 14.5623 + 10.5801i 0.563855 + 0.409664i
\(668\) 9.70820 7.05342i 0.375622 0.272905i
\(669\) 2.47214 7.60845i 0.0955783 0.294160i
\(670\) −30.0000 −1.15900
\(671\) 0 0
\(672\) 4.00000 0.154303
\(673\) 11.7426 36.1401i 0.452646 1.39310i −0.421231 0.906953i \(-0.638402\pi\)
0.873877 0.486147i \(-0.161598\pi\)
\(674\) −10.5172 + 7.64121i −0.405108 + 0.294328i
\(675\) −12.9443 9.40456i −0.498225 0.361982i
\(676\) 3.70820 + 11.4127i 0.142623 + 0.438949i
\(677\) −4.63525 14.2658i −0.178147 0.548281i 0.821616 0.570042i \(-0.193073\pi\)
−0.999763 + 0.0217604i \(0.993073\pi\)
\(678\) 14.5623 + 10.5801i 0.559262 + 0.406328i
\(679\) −17.7984 + 12.9313i −0.683039 + 0.496257i
\(680\) 2.78115 8.55951i 0.106652 0.328242i
\(681\) 0 0
\(682\) 0 0
\(683\) 6.00000 0.229584 0.114792 0.993390i \(-0.463380\pi\)
0.114792 + 0.993390i \(0.463380\pi\)
\(684\) 0.618034 1.90211i 0.0236311 0.0727291i
\(685\) 14.5623 10.5801i 0.556397 0.404246i
\(686\) −16.1803 11.7557i −0.617768 0.448835i
\(687\) −3.09017 9.51057i −0.117897 0.362851i
\(688\) 2.47214 + 7.60845i 0.0942493 + 0.290070i
\(689\) 12.1353 + 8.81678i 0.462316 + 0.335893i
\(690\) 29.1246 21.1603i 1.10876 0.805558i
\(691\) −1.23607 + 3.80423i −0.0470222 + 0.144720i −0.971811 0.235762i \(-0.924242\pi\)
0.924789 + 0.380481i \(0.124242\pi\)
\(692\) 6.00000 0.228086
\(693\) 0 0
\(694\) −36.0000 −1.36654
\(695\) 20.3951 62.7697i 0.773631 2.38099i
\(696\) 4.85410 3.52671i 0.183994 0.133680i
\(697\) −7.28115 5.29007i −0.275793 0.200376i
\(698\) −5.25329 16.1680i −0.198840 0.611966i
\(699\) 12.9787 + 39.9444i 0.490900 + 1.51083i
\(700\) −6.47214 4.70228i −0.244624 0.177730i
\(701\) 21.8435 15.8702i 0.825016 0.599409i −0.0931288 0.995654i \(-0.529687\pi\)
0.918145 + 0.396245i \(0.129687\pi\)
\(702\) −6.18034 + 19.0211i −0.233262 + 0.717906i
\(703\) −14.0000 −0.528020
\(704\) 0 0
\(705\) 36.0000 1.35584
\(706\) 2.78115 8.55951i 0.104670 0.322141i
\(707\) −9.70820 + 7.05342i −0.365115 + 0.265271i
\(708\) 0 0
\(709\) −3.09017 9.51057i −0.116054 0.357177i 0.876112 0.482108i \(-0.160129\pi\)
−0.992165 + 0.124932i \(0.960129\pi\)
\(710\) 11.1246 + 34.2380i 0.417499 + 1.28493i
\(711\) −1.61803 1.17557i −0.0606810 0.0440873i
\(712\) −7.28115 + 5.29007i −0.272873 + 0.198254i
\(713\) 3.70820 11.4127i 0.138873 0.427408i
\(714\) 12.0000 0.449089
\(715\) 0 0
\(716\) 0 0
\(717\) 18.5410 57.0634i 0.692427 2.13107i
\(718\) 14.5623 10.5801i 0.543460 0.394847i
\(719\) −14.5623 10.5801i −0.543082 0.394572i 0.282146 0.959371i \(-0.408954\pi\)
−0.825229 + 0.564799i \(0.808954\pi\)
\(720\) −0.927051 2.85317i −0.0345492 0.106331i
\(721\) 4.94427 + 15.2169i 0.184134 + 0.566707i
\(722\) −12.1353 8.81678i −0.451627 0.328127i
\(723\) −16.1803 + 11.7557i −0.601753 + 0.437199i
\(724\) 1.54508 4.75528i 0.0574226 0.176729i
\(725\) −12.0000 −0.445669
\(726\) 0 0
\(727\) 26.0000 0.964287 0.482143 0.876092i \(-0.339858\pi\)
0.482143 + 0.876092i \(0.339858\pi\)
\(728\) −3.09017 + 9.51057i −0.114529 + 0.352485i
\(729\) −10.5172 + 7.64121i −0.389527 + 0.283008i
\(730\) −33.9787 24.6870i −1.25761 0.913706i
\(731\) 7.41641 + 22.8254i 0.274306 + 0.844226i
\(732\) 6.18034 + 19.0211i 0.228432 + 0.703041i
\(733\) −4.04508 2.93893i −0.149409 0.108552i 0.510570 0.859836i \(-0.329435\pi\)
−0.659978 + 0.751285i \(0.729435\pi\)
\(734\) −8.09017 + 5.87785i −0.298614 + 0.216955i
\(735\) −5.56231 + 17.1190i −0.205169 + 0.631444i
\(736\) −6.00000 −0.221163
\(737\) 0 0
\(738\) −3.00000 −0.110432
\(739\) 8.03444 24.7275i 0.295552 0.909615i −0.687484 0.726200i \(-0.741285\pi\)
0.983036 0.183415i \(-0.0587152\pi\)
\(740\) −16.9894 + 12.3435i −0.624541 + 0.453756i
\(741\) 16.1803 + 11.7557i 0.594400 + 0.431857i
\(742\) 1.85410 + 5.70634i 0.0680662 + 0.209486i
\(743\) −5.56231 17.1190i −0.204061 0.628036i −0.999751 0.0223310i \(-0.992891\pi\)
0.795689 0.605705i \(-0.207109\pi\)
\(744\) −3.23607 2.35114i −0.118640 0.0861970i
\(745\) −7.28115 + 5.29007i −0.266761 + 0.193813i
\(746\) 3.09017 9.51057i 0.113139 0.348207i
\(747\) 18.0000 0.658586
\(748\) 0 0
\(749\) −12.0000 −0.438470
\(750\) 1.85410 5.70634i 0.0677022 0.208366i
\(751\) −35.5967 + 25.8626i −1.29894 + 0.943738i −0.999945 0.0105155i \(-0.996653\pi\)
−0.298999 + 0.954253i \(0.596653\pi\)
\(752\) −4.85410 3.52671i −0.177011 0.128606i
\(753\) −11.1246 34.2380i −0.405403 1.24770i
\(754\) 4.63525 + 14.2658i 0.168806 + 0.519532i
\(755\) 19.4164 + 14.1068i 0.706635 + 0.513401i
\(756\) −6.47214 + 4.70228i −0.235389 + 0.171020i
\(757\) 12.6697 38.9933i 0.460488 1.41724i −0.404082 0.914723i \(-0.632409\pi\)
0.864570 0.502513i \(-0.167591\pi\)
\(758\) 16.0000 0.581146
\(759\) 0 0
\(760\) 6.00000 0.217643
\(761\) 0.927051 2.85317i 0.0336056 0.103427i −0.932847 0.360273i \(-0.882683\pi\)
0.966452 + 0.256846i \(0.0826834\pi\)
\(762\) −12.9443 + 9.40456i −0.468921 + 0.340691i
\(763\) −27.5066 19.9847i −0.995805 0.723495i
\(764\) 0 0
\(765\) −2.78115 8.55951i −0.100553 0.309470i
\(766\) 9.70820 + 7.05342i 0.350772 + 0.254851i
\(767\) 0 0
\(768\) −0.618034 + 1.90211i −0.0223014 + 0.0686366i
\(769\) 35.0000 1.26213 0.631066 0.775729i \(-0.282618\pi\)
0.631066 + 0.775729i \(0.282618\pi\)
\(770\) 0 0
\(771\) −6.00000 −0.216085
\(772\) −4.01722 + 12.3637i −0.144583 + 0.444981i
\(773\) 33.9787 24.6870i 1.22213 0.887929i 0.225854 0.974161i \(-0.427483\pi\)
0.996275 + 0.0862321i \(0.0274827\pi\)
\(774\) 6.47214 + 4.70228i 0.232636 + 0.169020i
\(775\) 2.47214 + 7.60845i 0.0888017 + 0.273304i
\(776\) −3.39919 10.4616i −0.122024 0.375550i
\(777\) −22.6525 16.4580i −0.812653 0.590427i
\(778\) 26.6976 19.3969i 0.957154 0.695413i
\(779\) 1.85410 5.70634i 0.0664301 0.204451i
\(780\) 30.0000 1.07417
\(781\) 0 0
\(782\) −18.0000 −0.643679
\(783\) −3.70820 + 11.4127i −0.132520 + 0.407856i
\(784\) 2.42705 1.76336i 0.0866804 0.0629770i
\(785\) 4.85410 + 3.52671i 0.173250 + 0.125874i
\(786\) 0 0
\(787\) −1.23607 3.80423i −0.0440611 0.135606i 0.926606 0.376034i \(-0.122712\pi\)
−0.970667 + 0.240428i \(0.922712\pi\)
\(788\) 12.1353 + 8.81678i 0.432301 + 0.314085i
\(789\) 9.70820 7.05342i 0.345621 0.251109i
\(790\) 1.85410 5.70634i 0.0659660 0.203022i
\(791\) −18.0000 −0.640006
\(792\) 0 0
\(793\) −50.0000 −1.77555
\(794\) −5.25329 + 16.1680i −0.186432 + 0.573779i
\(795\) 14.5623 10.5801i 0.516472 0.375239i
\(796\) 12.9443 + 9.40456i 0.458798 + 0.333336i
\(797\) −12.9787 39.9444i −0.459730 1.41490i −0.865492 0.500924i \(-0.832994\pi\)
0.405762 0.913979i \(-0.367006\pi\)
\(798\) 2.47214 + 7.60845i 0.0875127 + 0.269336i
\(799\) −14.5623 10.5801i −0.515177 0.374298i
\(800\) 3.23607 2.35114i 0.114412 0.0831254i
\(801\) −2.78115 + 8.55951i −0.0982672 + 0.302435i
\(802\) 33.0000 1.16527
\(803\) 0 0
\(804\) 20.0000 0.705346
\(805\) −11.1246 + 34.2380i −0.392091 + 1.20673i
\(806\) 8.09017 5.87785i 0.284964 0.207039i
\(807\) −4.85410 3.52671i −0.170872 0.124146i
\(808\) −1.85410 5.70634i −0.0652271 0.200748i
\(809\) 1.85410 + 5.70634i 0.0651868 + 0.200624i 0.978345 0.206981i \(-0.0663639\pi\)
−0.913158 + 0.407605i \(0.866364\pi\)
\(810\) 26.6976 + 19.3969i 0.938057 + 0.681538i
\(811\) 22.6525 16.4580i 0.795436 0.577918i −0.114136 0.993465i \(-0.536410\pi\)
0.909572 + 0.415547i \(0.136410\pi\)
\(812\) −1.85410 + 5.70634i −0.0650662 + 0.200253i
\(813\) −40.0000 −1.40286
\(814\) 0 0
\(815\) 66.0000 2.31188
\(816\) −1.85410 + 5.70634i −0.0649066 + 0.199762i
\(817\) −12.9443 + 9.40456i −0.452863 + 0.329024i
\(818\) −10.5172 7.64121i −0.367726 0.267169i
\(819\) 3.09017 + 9.51057i 0.107979 + 0.332326i
\(820\) −2.78115 8.55951i −0.0971221 0.298911i
\(821\) −24.2705 17.6336i −0.847047 0.615415i 0.0772835 0.997009i \(-0.475375\pi\)
−0.924330 + 0.381594i \(0.875375\pi\)
\(822\) −9.70820 + 7.05342i −0.338612 + 0.246016i
\(823\) 9.88854 30.4338i 0.344693 1.06086i −0.617055 0.786920i \(-0.711674\pi\)
0.961748 0.273936i \(-0.0883256\pi\)
\(824\) −8.00000 −0.278693
\(825\) 0 0
\(826\) 0 0
\(827\) 5.56231 17.1190i 0.193420 0.595287i −0.806571 0.591137i \(-0.798679\pi\)
0.999991 0.00414942i \(-0.00132080\pi\)
\(828\) −4.85410 + 3.52671i −0.168692 + 0.122562i
\(829\) 34.7877 + 25.2748i 1.20823 + 0.877829i 0.995069 0.0991886i \(-0.0316247\pi\)
0.213159 + 0.977017i \(0.431625\pi\)
\(830\) 16.6869 + 51.3571i 0.579211 + 1.78263i
\(831\) −3.09017 9.51057i −0.107197 0.329918i
\(832\) −4.04508 2.93893i −0.140238 0.101889i
\(833\) 7.28115 5.29007i 0.252277 0.183290i
\(834\) −13.5967 + 41.8465i −0.470817 + 1.44903i
\(835\) 36.0000 1.24583
\(836\) 0 0
\(837\) 8.00000 0.276520
\(838\) 5.56231 17.1190i 0.192147 0.591367i
\(839\) −14.5623 + 10.5801i −0.502747 + 0.365267i −0.810065 0.586340i \(-0.800568\pi\)
0.307318 + 0.951607i \(0.400568\pi\)
\(840\) 9.70820 + 7.05342i 0.334965 + 0.243366i
\(841\) −6.18034 19.0211i −0.213115 0.655901i
\(842\) −5.25329 16.1680i −0.181040 0.557185i
\(843\) 9.70820 + 7.05342i 0.334368 + 0.242933i
\(844\) 3.23607 2.35114i 0.111390 0.0809296i
\(845\) −11.1246 + 34.2380i −0.382698 + 1.17782i
\(846\) −6.00000 −0.206284
\(847\) 0 0
\(848\) −3.00000 −0.103020
\(849\) −12.3607 + 38.0423i −0.424217 + 1.30561i
\(850\) 9.70820 7.05342i 0.332989 0.241930i
\(851\) 33.9787 + 24.6870i 1.16478 + 0.846259i
\(852\) −7.41641 22.8254i −0.254082 0.781984i
\(853\) 8.96149 + 27.5806i 0.306836 + 0.944343i 0.978986 + 0.203928i \(0.0653709\pi\)
−0.672150 + 0.740415i \(0.734629\pi\)
\(854\) −16.1803 11.7557i −0.553680 0.402272i
\(855\) 4.85410 3.52671i 0.166007 0.120611i
\(856\) 1.85410 5.70634i 0.0633719 0.195039i
\(857\) −54.0000 −1.84460 −0.922302 0.386469i \(-0.873695\pi\)
−0.922302 + 0.386469i \(0.873695\pi\)
\(858\) 0 0
\(859\) 32.0000 1.09183 0.545913 0.837842i \(-0.316183\pi\)
0.545913 + 0.837842i \(0.316183\pi\)
\(860\) −7.41641 + 22.8254i −0.252897 + 0.778338i
\(861\) 9.70820 7.05342i 0.330855 0.240380i
\(862\) 29.1246 + 21.1603i 0.991988 + 0.720722i
\(863\) 1.85410 + 5.70634i 0.0631144 + 0.194246i 0.977642 0.210278i \(-0.0674370\pi\)
−0.914527 + 0.404524i \(0.867437\pi\)
\(864\) −1.23607 3.80423i −0.0420519 0.129422i
\(865\) 14.5623 + 10.5801i 0.495133 + 0.359735i
\(866\) −29.9336 + 21.7481i −1.01719 + 0.739029i
\(867\) 4.94427 15.2169i 0.167916 0.516793i
\(868\) 4.00000 0.135769
\(869\) 0 0
\(870\) 18.0000 0.610257
\(871\) −15.4508 + 47.5528i −0.523532 + 1.61127i
\(872\) 13.7533 9.99235i 0.465745 0.338384i
\(873\) −8.89919 6.46564i −0.301192 0.218829i
\(874\) −3.70820 11.4127i −0.125432 0.386040i
\(875\) 1.85410 + 5.70634i 0.0626801 + 0.192909i
\(876\) 22.6525 + 16.4580i 0.765356 + 0.556064i
\(877\) −33.1697 + 24.0992i −1.12006 + 0.813772i −0.984218 0.176958i \(-0.943374\pi\)
−0.135843 + 0.990730i \(0.543374\pi\)
\(878\) 6.79837 20.9232i 0.229434 0.706125i
\(879\) −42.0000 −1.41662
\(880\) 0 0
\(881\) −45.0000 −1.51609 −0.758044 0.652203i \(-0.773845\pi\)
−0.758044 + 0.652203i \(0.773845\pi\)
\(882\) 0.927051 2.85317i 0.0312154 0.0960712i
\(883\) 3.23607 2.35114i 0.108902 0.0791222i −0.532001 0.846744i \(-0.678560\pi\)
0.640904 + 0.767621i \(0.278560\pi\)
\(884\) −12.1353 8.81678i −0.408153 0.296540i
\(885\) 0 0
\(886\) −11.1246 34.2380i −0.373739 1.15025i
\(887\) 14.5623 + 10.5801i 0.488954 + 0.355246i 0.804782 0.593570i \(-0.202282\pi\)
−0.315828 + 0.948817i \(0.602282\pi\)
\(888\) 11.3262 8.22899i 0.380084 0.276147i
\(889\) 4.94427 15.2169i 0.165826 0.510359i
\(890\) −27.0000 −0.905042
\(891\) 0 0
\(892\) −4.00000 −0.133930
\(893\) 3.70820 11.4127i 0.124090 0.381911i
\(894\) 4.85410 3.52671i 0.162345 0.117951i
\(895\) 0 0
\(896\) −0.618034 1.90211i −0.0206471 0.0635451i
\(897\) −18.5410 57.0634i −0.619067 1.90529i
\(898\) −16.9894 12.3435i −0.566942 0.411908i
\(899\) 4.85410 3.52671i 0.161893 0.117622i
\(900\) 1.23607 3.80423i 0.0412023 0.126808i
\(901\) −9.00000 −0.299833
\(902\) 0 0
\(903\) −32.0000 −1.06489
\(904\) 2.78115 8.55951i 0.0924998 0.284685i
\(905\) 12.1353 8.81678i 0.403390 0.293080i
\(906\) −12.9443 9.40456i −0.430045 0.312446i
\(907\) 13.5967 + 41.8465i 0.451473 + 1.38949i 0.875227 + 0.483713i \(0.160712\pi\)
−0.423754 + 0.905777i \(0.639288\pi\)
\(908\) 0 0
\(909\) −4.85410 3.52671i −0.161000 0.116974i
\(910\) −24.2705 + 17.6336i −0.804560 + 0.584547i
\(911\) −7.41641 + 22.8254i −0.245717 + 0.756238i 0.749801 + 0.661663i \(0.230149\pi\)
−0.995518 + 0.0945746i \(0.969851\pi\)
\(912\) −4.00000 −0.132453
\(913\) 0 0
\(914\) 1.00000 0.0330771
\(915\) −18.5410 + 57.0634i −0.612947 + 1.88646i
\(916\) −4.04508 + 2.93893i −0.133653 + 0.0971049i
\(917\) 0 0
\(918\) −3.70820 11.4127i −0.122389 0.376675i
\(919\) −8.65248 26.6296i −0.285419 0.878429i −0.986273 0.165124i \(-0.947198\pi\)
0.700854 0.713305i \(-0.252802\pi\)
\(920\) −14.5623 10.5801i −0.480105 0.348817i
\(921\) −16.1803 + 11.7557i −0.533160 + 0.387364i
\(922\) −6.48936 + 19.9722i −0.213716 + 0.657749i
\(923\) 60.0000 1.97492
\(924\) 0 0
\(925\) −28.0000 −0.920634
\(926\) 1.23607 3.80423i 0.0406197 0.125015i
\(927\) −6.47214 + 4.70228i −0.212573 + 0.154443i
\(928\) −2.42705 1.76336i −0.0796719 0.0578850i
\(929\) 15.7599 + 48.5039i 0.517064 + 1.59136i 0.779494 + 0.626410i \(0.215476\pi\)
−0.262430 + 0.964951i \(0.584524\pi\)
\(930\) −3.70820 11.4127i −0.121597 0.374236i
\(931\) 4.85410 + 3.52671i 0.159087 + 0.115583i
\(932\) 16.9894 12.3435i 0.556505 0.404324i
\(933\) 0 0
\(934\) 12.0000 0.392652
\(935\) 0 0
\(936\) −5.00000 −0.163430
\(937\) 7.10739 21.8743i 0.232188 0.714602i −0.765294 0.643681i \(-0.777406\pi\)
0.997482 0.0709209i \(-0.0225938\pi\)
\(938\) −16.1803 + 11.7557i −0.528307 + 0.383837i
\(939\) −1.61803 1.17557i −0.0528025 0.0383633i
\(940\) −5.56231 17.1190i −0.181422 0.558361i
\(941\) −12.0517 37.0912i −0.392873 1.20914i −0.930606 0.366023i \(-0.880719\pi\)
0.537733 0.843115i \(-0.319281\pi\)
\(942\) −3.23607 2.35114i −0.105437 0.0766043i
\(943\) −14.5623 + 10.5801i −0.474214 + 0.344537i
\(944\) 0 0
\(945\) −24.0000 −0.780720
\(946\) 0 0
\(947\) −30.0000 −0.974869 −0.487435 0.873160i \(-0.662067\pi\)
−0.487435 + 0.873160i \(0.662067\pi\)
\(948\) −1.23607 + 3.80423i −0.0401456 + 0.123556i
\(949\) −56.6312 + 41.1450i −1.83833 + 1.33562i
\(950\) 6.47214 + 4.70228i 0.209984 + 0.152562i
\(951\) 11.1246 + 34.2380i 0.360740 + 1.11024i
\(952\) −1.85410 5.70634i −0.0600918 0.184944i
\(953\) −31.5517 22.9236i −1.02206 0.742569i −0.0553547 0.998467i \(-0.517629\pi\)
−0.966704 + 0.255898i \(0.917629\pi\)
\(954\) −2.42705 + 1.76336i −0.0785787 + 0.0570908i
\(955\) 0 0
\(956\) −30.0000 −0.970269
\(957\) 0 0
\(958\) 0 0
\(959\) 3.70820 11.4127i 0.119744 0.368535i
\(960\) −4.85410 + 3.52671i −0.156665 + 0.113824i
\(961\) 21.8435 + 15.8702i 0.704628 + 0.511942i
\(962\) 10.8156 + 33.2870i 0.348709 + 1.07322i
\(963\) −1.85410 5.70634i −0.0597476 0.183884i
\(964\) 8.09017 + 5.87785i 0.260567 + 0.189313i
\(965\) −31.5517 + 22.9236i −1.01568 + 0.737938i
\(966\) 7.41641 22.8254i 0.238619 0.734394i
\(967\) 50.0000 1.60789 0.803946 0.594703i \(-0.202730\pi\)
0.803946 + 0.594703i \(0.202730\pi\)
\(968\) 0 0
\(969\) −12.0000 −0.385496
\(970\) 10.1976 31.3849i 0.327424 1.00771i
\(971\) −4.85410 + 3.52671i −0.155776 + 0.113178i −0.662943 0.748670i \(-0.730693\pi\)
0.507167 + 0.861848i \(0.330693\pi\)
\(972\) −8.09017 5.87785i −0.259492 0.188532i
\(973\) −13.5967 41.8465i −0.435892 1.34154i
\(974\) 10.5066 + 32.3359i 0.336652 + 1.03611i
\(975\) 32.3607 + 23.5114i 1.03637 + 0.752968i
\(976\) 8.09017 5.87785i 0.258960 0.188145i
\(977\) −10.1976 + 31.3849i −0.326249 + 1.00409i 0.644625 + 0.764499i \(0.277014\pi\)
−0.970874 + 0.239592i \(0.922986\pi\)
\(978\) −44.0000 −1.40696
\(979\) 0 0
\(980\) 9.00000 0.287494
\(981\) 5.25329 16.1680i 0.167725 0.516203i
\(982\) −24.2705 + 17.6336i −0.774503 + 0.562709i
\(983\) −48.5410 35.2671i −1.54822 1.12485i −0.944906 0.327341i \(-0.893847\pi\)
−0.603312 0.797505i \(-0.706153\pi\)
\(984\) 1.85410 + 5.70634i 0.0591066 + 0.181911i
\(985\) 13.9058 + 42.7975i 0.443075 + 1.36364i
\(986\) −7.28115 5.29007i −0.231879 0.168470i
\(987\) 19.4164 14.1068i 0.618031 0.449026i
\(988\) 3.09017 9.51057i 0.0983114 0.302571i
\(989\) 48.0000 1.52631
\(990\) 0 0
\(991\) −52.0000 −1.65183 −0.825917 0.563791i \(-0.809342\pi\)
−0.825917 + 0.563791i \(0.809342\pi\)
\(992\) −0.618034 + 1.90211i −0.0196226 + 0.0603921i
\(993\) 32.3607 23.5114i 1.02694 0.746112i
\(994\) 19.4164 + 14.1068i 0.615851 + 0.447442i
\(995\) 14.8328 + 45.6507i 0.470232 + 1.44722i
\(996\) −11.1246 34.2380i −0.352497 1.08487i
\(997\) 25.0795 + 18.2213i 0.794277 + 0.577076i 0.909230 0.416295i \(-0.136672\pi\)
−0.114953 + 0.993371i \(0.536672\pi\)
\(998\) −12.9443 + 9.40456i −0.409744 + 0.297696i
\(999\) −8.65248 + 26.6296i −0.273752 + 0.842523i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 242.2.c.e.9.1 4
11.2 odd 10 242.2.c.b.3.1 4
11.3 even 5 inner 242.2.c.e.81.1 4
11.4 even 5 242.2.a.a.1.1 1
11.5 even 5 inner 242.2.c.e.27.1 4
11.6 odd 10 242.2.c.b.27.1 4
11.7 odd 10 242.2.a.b.1.1 yes 1
11.8 odd 10 242.2.c.b.81.1 4
11.9 even 5 inner 242.2.c.e.3.1 4
11.10 odd 2 242.2.c.b.9.1 4
33.26 odd 10 2178.2.a.l.1.1 1
33.29 even 10 2178.2.a.f.1.1 1
44.7 even 10 1936.2.a.k.1.1 1
44.15 odd 10 1936.2.a.j.1.1 1
55.4 even 10 6050.2.a.bl.1.1 1
55.29 odd 10 6050.2.a.s.1.1 1
88.29 odd 10 7744.2.a.bh.1.1 1
88.37 even 10 7744.2.a.bi.1.1 1
88.51 even 10 7744.2.a.h.1.1 1
88.59 odd 10 7744.2.a.g.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
242.2.a.a.1.1 1 11.4 even 5
242.2.a.b.1.1 yes 1 11.7 odd 10
242.2.c.b.3.1 4 11.2 odd 10
242.2.c.b.9.1 4 11.10 odd 2
242.2.c.b.27.1 4 11.6 odd 10
242.2.c.b.81.1 4 11.8 odd 10
242.2.c.e.3.1 4 11.9 even 5 inner
242.2.c.e.9.1 4 1.1 even 1 trivial
242.2.c.e.27.1 4 11.5 even 5 inner
242.2.c.e.81.1 4 11.3 even 5 inner
1936.2.a.j.1.1 1 44.15 odd 10
1936.2.a.k.1.1 1 44.7 even 10
2178.2.a.f.1.1 1 33.29 even 10
2178.2.a.l.1.1 1 33.26 odd 10
6050.2.a.s.1.1 1 55.29 odd 10
6050.2.a.bl.1.1 1 55.4 even 10
7744.2.a.g.1.1 1 88.59 odd 10
7744.2.a.h.1.1 1 88.51 even 10
7744.2.a.bh.1.1 1 88.29 odd 10
7744.2.a.bi.1.1 1 88.37 even 10