Properties

Label 2-2366-1.1-c1-0-21
Degree $2$
Conductor $2366$
Sign $-1$
Analytic cond. $18.8926$
Root an. cond. $4.34656$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2.46·3-s + 4-s − 3.19·5-s + 2.46·6-s − 7-s − 8-s + 3.07·9-s + 3.19·10-s + 1.63·11-s − 2.46·12-s + 14-s + 7.87·15-s + 16-s − 3.38·17-s − 3.07·18-s − 5.90·19-s − 3.19·20-s + 2.46·21-s − 1.63·22-s + 6.07·23-s + 2.46·24-s + 5.19·25-s − 0.179·27-s − 28-s − 0.769·29-s − 7.87·30-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.42·3-s + 0.5·4-s − 1.42·5-s + 1.00·6-s − 0.377·7-s − 0.353·8-s + 1.02·9-s + 1.00·10-s + 0.494·11-s − 0.711·12-s + 0.267·14-s + 2.03·15-s + 0.250·16-s − 0.821·17-s − 0.724·18-s − 1.35·19-s − 0.714·20-s + 0.537·21-s − 0.349·22-s + 1.26·23-s + 0.503·24-s + 1.03·25-s − 0.0346·27-s − 0.188·28-s − 0.142·29-s − 1.43·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2366 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2366 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2366\)    =    \(2 \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(18.8926\)
Root analytic conductor: \(4.34656\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2366,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
7 \( 1 + T \)
13 \( 1 \)
good3 \( 1 + 2.46T + 3T^{2} \)
5 \( 1 + 3.19T + 5T^{2} \)
11 \( 1 - 1.63T + 11T^{2} \)
17 \( 1 + 3.38T + 17T^{2} \)
19 \( 1 + 5.90T + 19T^{2} \)
23 \( 1 - 6.07T + 23T^{2} \)
29 \( 1 + 0.769T + 29T^{2} \)
31 \( 1 + 8.79T + 31T^{2} \)
37 \( 1 - 8.07T + 37T^{2} \)
41 \( 1 - 10.5T + 41T^{2} \)
43 \( 1 - 10.2T + 43T^{2} \)
47 \( 1 - 8.70T + 47T^{2} \)
53 \( 1 - 3.75T + 53T^{2} \)
59 \( 1 - 8.61T + 59T^{2} \)
61 \( 1 - 1.62T + 61T^{2} \)
67 \( 1 + 6.49T + 67T^{2} \)
71 \( 1 + 14.7T + 71T^{2} \)
73 \( 1 + 16.0T + 73T^{2} \)
79 \( 1 - 4.98T + 79T^{2} \)
83 \( 1 - 13.1T + 83T^{2} \)
89 \( 1 + 13.1T + 89T^{2} \)
97 \( 1 - 7.70T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.810786308638672367046743284044, −7.57443068832440792066110531016, −7.16326598755700161388613309962, −6.34028517772382784246492722406, −5.68071061381945066945926689682, −4.44688800781819870736921581646, −3.97286148942958535098352945613, −2.57966245958481391575150125918, −0.922008000786412814647670393604, 0, 0.922008000786412814647670393604, 2.57966245958481391575150125918, 3.97286148942958535098352945613, 4.44688800781819870736921581646, 5.68071061381945066945926689682, 6.34028517772382784246492722406, 7.16326598755700161388613309962, 7.57443068832440792066110531016, 8.810786308638672367046743284044

Graph of the $Z$-function along the critical line