Properties

Label 2366.2.a.be
Level $2366$
Weight $2$
Character orbit 2366.a
Self dual yes
Analytic conductor $18.893$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2366,2,Mod(1,2366)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2366, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2366.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2366 = 2 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2366.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-6,1,6,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.8926051182\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.6052921.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 11x^{4} + 7x^{3} + 33x^{2} - 9x - 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + \beta_1 q^{3} + q^{4} + (\beta_{4} - 1) q^{5} - \beta_1 q^{6} - q^{7} - q^{8} + (\beta_{5} - \beta_{4} + \beta_{2} + \cdots + 1) q^{9} + ( - \beta_{4} + 1) q^{10} + ( - \beta_{4} + \beta_{3} - 1) q^{11}+ \cdots + ( - 2 \beta_{5} + \beta_{4} + 4 \beta_{3} + \cdots - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} + q^{3} + 6 q^{4} - 4 q^{5} - q^{6} - 6 q^{7} - 6 q^{8} + 5 q^{9} + 4 q^{10} - 6 q^{11} + q^{12} + 6 q^{14} + 5 q^{15} + 6 q^{16} - 9 q^{17} - 5 q^{18} - 10 q^{19} - 4 q^{20} - q^{21}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 11x^{4} + 7x^{3} + 33x^{2} - 9x - 27 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{4} - \nu^{3} - 8\nu^{2} + 4\nu + 12 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} - 4\nu^{4} - 8\nu^{3} + 31\nu^{2} + 12\nu - 36 ) / 9 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 4\nu^{5} - 4\nu^{4} - 35\nu^{3} + 19\nu^{2} + 60\nu ) / 9 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 4\nu^{5} - 7\nu^{4} - 32\nu^{3} + 52\nu^{2} + 39\nu - 72 ) / 9 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} - \beta_{4} + \beta_{2} + \beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} - 4\beta_{3} - 3\beta_{2} + 5\beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 9\beta_{5} - 8\beta_{4} - 4\beta_{3} + 8\beta_{2} + 9\beta _1 + 24 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 13\beta_{5} - \beta_{4} - 39\beta_{3} - 23\beta_{2} + 33\beta _1 + 40 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.46434
−1.52377
−1.05140
1.21736
1.96881
2.85334
−1.00000 −2.46434 1.00000 −3.19361 2.46434 −1.00000 −1.00000 3.07299 3.19361
1.2 −1.00000 −1.52377 1.00000 1.45506 1.52377 −1.00000 −1.00000 −0.678139 −1.45506
1.3 −1.00000 −1.05140 1.00000 −2.26985 1.05140 −1.00000 −1.00000 −1.89456 2.26985
1.4 −1.00000 1.21736 1.00000 3.44059 −1.21736 −1.00000 −1.00000 −1.51803 −3.44059
1.5 −1.00000 1.96881 1.00000 −2.90010 −1.96881 −1.00000 −1.00000 0.876202 2.90010
1.6 −1.00000 2.85334 1.00000 −0.532083 −2.85334 −1.00000 −1.00000 5.14154 0.532083
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2366.2.a.be 6
13.b even 2 1 2366.2.a.bg yes 6
13.d odd 4 2 2366.2.d.q 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2366.2.a.be 6 1.a even 1 1 trivial
2366.2.a.bg yes 6 13.b even 2 1
2366.2.d.q 12 13.d odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2366))\):

\( T_{3}^{6} - T_{3}^{5} - 11T_{3}^{4} + 7T_{3}^{3} + 33T_{3}^{2} - 9T_{3} - 27 \) Copy content Toggle raw display
\( T_{5}^{6} + 4T_{5}^{5} - 11T_{5}^{4} - 57T_{5}^{3} - 14T_{5}^{2} + 112T_{5} + 56 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{6} \) Copy content Toggle raw display
$3$ \( T^{6} - T^{5} + \cdots - 27 \) Copy content Toggle raw display
$5$ \( T^{6} + 4 T^{5} + \cdots + 56 \) Copy content Toggle raw display
$7$ \( (T + 1)^{6} \) Copy content Toggle raw display
$11$ \( T^{6} + 6 T^{5} + \cdots + 97 \) Copy content Toggle raw display
$13$ \( T^{6} \) Copy content Toggle raw display
$17$ \( T^{6} + 9 T^{5} + \cdots + 7 \) Copy content Toggle raw display
$19$ \( T^{6} + 10 T^{5} + \cdots + 5011 \) Copy content Toggle raw display
$23$ \( T^{6} - 21 T^{5} + \cdots + 14776 \) Copy content Toggle raw display
$29$ \( T^{6} + T^{5} + \cdots - 56 \) Copy content Toggle raw display
$31$ \( T^{6} + 20 T^{5} + \cdots - 1576 \) Copy content Toggle raw display
$37$ \( T^{6} + 16 T^{5} + \cdots + 16072 \) Copy content Toggle raw display
$41$ \( T^{6} + 2 T^{5} + \cdots - 43211 \) Copy content Toggle raw display
$43$ \( T^{6} - 2 T^{5} + \cdots - 455461 \) Copy content Toggle raw display
$47$ \( T^{6} - 5 T^{5} + \cdots - 23192 \) Copy content Toggle raw display
$53$ \( T^{6} - 28 T^{5} + \cdots - 7288 \) Copy content Toggle raw display
$59$ \( T^{6} - 12 T^{5} + \cdots + 4493 \) Copy content Toggle raw display
$61$ \( T^{6} + 27 T^{5} + \cdots + 4936 \) Copy content Toggle raw display
$67$ \( T^{6} + 16 T^{5} + \cdots + 3977 \) Copy content Toggle raw display
$71$ \( T^{6} - 257 T^{4} + \cdots - 30584 \) Copy content Toggle raw display
$73$ \( T^{6} + 38 T^{5} + \cdots + 207523 \) Copy content Toggle raw display
$79$ \( T^{6} - 6 T^{5} + \cdots + 1576 \) Copy content Toggle raw display
$83$ \( T^{6} - 6 T^{5} + \cdots - 31549 \) Copy content Toggle raw display
$89$ \( T^{6} - T^{5} + \cdots - 923 \) Copy content Toggle raw display
$97$ \( T^{6} + 16 T^{5} + \cdots + 30079 \) Copy content Toggle raw display
show more
show less