L(s) = 1 | + (0.866 + 0.5i)4-s + (−0.866 − 0.5i)5-s + (0.5 + 0.866i)7-s + (0.499 + 0.866i)16-s + (1 + i)17-s + (−0.499 − 0.866i)20-s + (−0.5 + 0.866i)23-s + 0.999i·28-s + (−0.5 − 0.866i)29-s + (−1.36 + 0.366i)31-s − 0.999i·35-s + (1 − i)37-s + (0.366 + 1.36i)41-s + (1.36 + 0.366i)47-s + 53-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)4-s + (−0.866 − 0.5i)5-s + (0.5 + 0.866i)7-s + (0.499 + 0.866i)16-s + (1 + i)17-s + (−0.499 − 0.866i)20-s + (−0.5 + 0.866i)23-s + 0.999i·28-s + (−0.5 − 0.866i)29-s + (−1.36 + 0.366i)31-s − 0.999i·35-s + (1 − i)37-s + (0.366 + 1.36i)41-s + (1.36 + 0.366i)47-s + 53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2349 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.630 - 0.776i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2349 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.630 - 0.776i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.323192723\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.323192723\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 29 | \( 1 + (0.5 + 0.866i)T \) |
good | 2 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 5 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 13 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (-1 - i)T + iT^{2} \) |
| 19 | \( 1 + iT^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (1.36 - 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 37 | \( 1 + (-1 + i)T - iT^{2} \) |
| 41 | \( 1 + (-0.366 - 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 43 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 47 | \( 1 + (-1.36 - 0.366i)T + (0.866 + 0.5i)T^{2} \) |
| 53 | \( 1 - T + T^{2} \) |
| 59 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.366 - 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 67 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - iT - T^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + iT^{2} \) |
| 97 | \( 1 + (0.866 + 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.069335123120073769389743190376, −8.320817880354059959959242162004, −7.78293683741057189996181114854, −7.27626293189250015935945131050, −5.93546036981903555582444391604, −5.62616982008485993670297081354, −4.25578038731871571492729780601, −3.65425987571402826367279226398, −2.53278132018889839526612148136, −1.54269653190541188291018196168,
0.962979849617603967068154075159, 2.27407989590122519820945774080, 3.32188333961569324777361774966, 4.11353682199998354706713951789, 5.17903195802927040404026262782, 5.96520603499672822803406770852, 7.13472242588666156662960619248, 7.30435381472095295935712608177, 7.973123929188648313723052662104, 9.113019579358355156555380466000