L(s) = 1 | + 4i·2-s − 16·4-s − 86.8i·5-s − 98.7i·7-s − 64i·8-s + 347.·10-s + 610. i·11-s + (592. + 143. i)13-s + 395.·14-s + 256·16-s + 1.14e3·17-s − 2.26e3i·19-s + 1.38e3i·20-s − 2.44e3·22-s − 433.·23-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s − 1.55i·5-s − 0.761i·7-s − 0.353i·8-s + 1.09·10-s + 1.52i·11-s + (0.971 + 0.234i)13-s + 0.538·14-s + 0.250·16-s + 0.963·17-s − 1.44i·19-s + 0.776i·20-s − 1.07·22-s − 0.170·23-s + ⋯ |
Λ(s)=(=(234s/2ΓC(s)L(s)(−0.234+0.971i)Λ(6−s)
Λ(s)=(=(234s/2ΓC(s+5/2)L(s)(−0.234+0.971i)Λ(1−s)
Degree: |
2 |
Conductor: |
234
= 2⋅32⋅13
|
Sign: |
−0.234+0.971i
|
Analytic conductor: |
37.5298 |
Root analytic conductor: |
6.12615 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ234(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 234, ( :5/2), −0.234+0.971i)
|
Particular Values
L(3) |
≈ |
1.261933762 |
L(21) |
≈ |
1.261933762 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−4iT |
| 3 | 1 |
| 13 | 1+(−592.−143.i)T |
good | 5 | 1+86.8iT−3.12e3T2 |
| 7 | 1+98.7iT−1.68e4T2 |
| 11 | 1−610.iT−1.61e5T2 |
| 17 | 1−1.14e3T+1.41e6T2 |
| 19 | 1+2.26e3iT−2.47e6T2 |
| 23 | 1+433.T+6.43e6T2 |
| 29 | 1+7.66e3T+2.05e7T2 |
| 31 | 1+7.36e3iT−2.86e7T2 |
| 37 | 1+1.05e4iT−6.93e7T2 |
| 41 | 1+3.69e3iT−1.15e8T2 |
| 43 | 1+6.06e3T+1.47e8T2 |
| 47 | 1−8.74e3iT−2.29e8T2 |
| 53 | 1+3.47e4T+4.18e8T2 |
| 59 | 1+1.19e4iT−7.14e8T2 |
| 61 | 1+4.54e4T+8.44e8T2 |
| 67 | 1−4.56e4iT−1.35e9T2 |
| 71 | 1+2.38e4iT−1.80e9T2 |
| 73 | 1+3.77e4iT−2.07e9T2 |
| 79 | 1+3.53e4T+3.07e9T2 |
| 83 | 1−3.14e4iT−3.93e9T2 |
| 89 | 1−5.90e4iT−5.58e9T2 |
| 97 | 1+4.96e3iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.02863556653891339517209650889, −9.612565490119138772806942403494, −9.145200425145832555467588288558, −7.918602933113753464778722624617, −7.19094174652952507656679588523, −5.78304801948556153484697870429, −4.73139053089582003258059214155, −3.99004334248554720880488743533, −1.59883081265575553430319927898, −0.37921355488310683196211631948,
1.54004811445409200498052538396, 3.13724758851073491568825200625, 3.47281876708367259058623711348, 5.62665225768673021523670576017, 6.26653386199517144480620083824, 7.80722662140288644923417936139, 8.688801069555330959361953351428, 9.962706446220888200175893222321, 10.76308597445775540388085946921, 11.39016413353933012732552657845