Properties

Label 2-234-13.12-c5-0-5
Degree $2$
Conductor $234$
Sign $-0.234 - 0.971i$
Analytic cond. $37.5298$
Root an. cond. $6.12615$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4i·2-s − 16·4-s + 86.8i·5-s + 98.7i·7-s + 64i·8-s + 347.·10-s − 610. i·11-s + (592. − 143. i)13-s + 395.·14-s + 256·16-s + 1.14e3·17-s + 2.26e3i·19-s − 1.38e3i·20-s − 2.44e3·22-s − 433.·23-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.5·4-s + 1.55i·5-s + 0.761i·7-s + 0.353i·8-s + 1.09·10-s − 1.52i·11-s + (0.971 − 0.234i)13-s + 0.538·14-s + 0.250·16-s + 0.963·17-s + 1.44i·19-s − 0.776i·20-s − 1.07·22-s − 0.170·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.234 - 0.971i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.234 - 0.971i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(234\)    =    \(2 \cdot 3^{2} \cdot 13\)
Sign: $-0.234 - 0.971i$
Analytic conductor: \(37.5298\)
Root analytic conductor: \(6.12615\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{234} (181, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 234,\ (\ :5/2),\ -0.234 - 0.971i)\)

Particular Values

\(L(3)\) \(\approx\) \(1.261933762\)
\(L(\frac12)\) \(\approx\) \(1.261933762\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4iT \)
3 \( 1 \)
13 \( 1 + (-592. + 143. i)T \)
good5 \( 1 - 86.8iT - 3.12e3T^{2} \)
7 \( 1 - 98.7iT - 1.68e4T^{2} \)
11 \( 1 + 610. iT - 1.61e5T^{2} \)
17 \( 1 - 1.14e3T + 1.41e6T^{2} \)
19 \( 1 - 2.26e3iT - 2.47e6T^{2} \)
23 \( 1 + 433.T + 6.43e6T^{2} \)
29 \( 1 + 7.66e3T + 2.05e7T^{2} \)
31 \( 1 - 7.36e3iT - 2.86e7T^{2} \)
37 \( 1 - 1.05e4iT - 6.93e7T^{2} \)
41 \( 1 - 3.69e3iT - 1.15e8T^{2} \)
43 \( 1 + 6.06e3T + 1.47e8T^{2} \)
47 \( 1 + 8.74e3iT - 2.29e8T^{2} \)
53 \( 1 + 3.47e4T + 4.18e8T^{2} \)
59 \( 1 - 1.19e4iT - 7.14e8T^{2} \)
61 \( 1 + 4.54e4T + 8.44e8T^{2} \)
67 \( 1 + 4.56e4iT - 1.35e9T^{2} \)
71 \( 1 - 2.38e4iT - 1.80e9T^{2} \)
73 \( 1 - 3.77e4iT - 2.07e9T^{2} \)
79 \( 1 + 3.53e4T + 3.07e9T^{2} \)
83 \( 1 + 3.14e4iT - 3.93e9T^{2} \)
89 \( 1 + 5.90e4iT - 5.58e9T^{2} \)
97 \( 1 - 4.96e3iT - 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.39016413353933012732552657845, −10.76308597445775540388085946921, −9.962706446220888200175893222321, −8.688801069555330959361953351428, −7.80722662140288644923417936139, −6.26653386199517144480620083824, −5.62665225768673021523670576017, −3.47281876708367259058623711348, −3.13724758851073491568825200625, −1.54004811445409200498052538396, 0.37921355488310683196211631948, 1.59883081265575553430319927898, 3.99004334248554720880488743533, 4.73139053089582003258059214155, 5.78304801948556153484697870429, 7.19094174652952507656679588523, 7.918602933113753464778722624617, 9.145200425145832555467588288558, 9.612565490119138772806942403494, 11.02863556653891339517209650889

Graph of the $Z$-function along the critical line