L(s) = 1 | + (−0.258 + 0.965i)2-s + (−1.15 + 1.29i)3-s + (−0.866 − 0.499i)4-s + (0.817 − 3.04i)5-s + (−0.947 − 1.44i)6-s + (−2.08 − 2.08i)7-s + (0.707 − 0.707i)8-s + (−0.330 − 2.98i)9-s + (2.73 + 1.57i)10-s + (−0.842 − 0.225i)11-s + (1.64 − 0.539i)12-s + (−0.0715 − 3.60i)13-s + (2.54 − 1.47i)14-s + (2.99 + 4.57i)15-s + (0.500 + 0.866i)16-s + (1.80 + 3.11i)17-s + ⋯ |
L(s) = 1 | + (−0.183 + 0.683i)2-s + (−0.666 + 0.745i)3-s + (−0.433 − 0.249i)4-s + (0.365 − 1.36i)5-s + (−0.386 − 0.591i)6-s + (−0.786 − 0.786i)7-s + (0.249 − 0.249i)8-s + (−0.110 − 0.993i)9-s + (0.864 + 0.499i)10-s + (−0.254 − 0.0680i)11-s + (0.475 − 0.155i)12-s + (−0.0198 − 0.999i)13-s + (0.681 − 0.393i)14-s + (0.772 + 1.18i)15-s + (0.125 + 0.216i)16-s + (0.436 + 0.756i)17-s + ⋯ |
Λ(s)=(=(234s/2ΓC(s)L(s)(0.646+0.763i)Λ(2−s)
Λ(s)=(=(234s/2ΓC(s+1/2)L(s)(0.646+0.763i)Λ(1−s)
Degree: |
2 |
Conductor: |
234
= 2⋅32⋅13
|
Sign: |
0.646+0.763i
|
Analytic conductor: |
1.86849 |
Root analytic conductor: |
1.36693 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ234(227,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 234, ( :1/2), 0.646+0.763i)
|
Particular Values
L(1) |
≈ |
0.599057−0.277721i |
L(21) |
≈ |
0.599057−0.277721i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.258−0.965i)T |
| 3 | 1+(1.15−1.29i)T |
| 13 | 1+(0.0715+3.60i)T |
good | 5 | 1+(−0.817+3.04i)T+(−4.33−2.5i)T2 |
| 7 | 1+(2.08+2.08i)T+7iT2 |
| 11 | 1+(0.842+0.225i)T+(9.52+5.5i)T2 |
| 17 | 1+(−1.80−3.11i)T+(−8.5+14.7i)T2 |
| 19 | 1+(4.90+1.31i)T+(16.4+9.5i)T2 |
| 23 | 1−3.73T+23T2 |
| 29 | 1+(−7.44+4.29i)T+(14.5−25.1i)T2 |
| 31 | 1+(4.96+1.33i)T+(26.8+15.5i)T2 |
| 37 | 1+(5.77−1.54i)T+(32.0−18.5i)T2 |
| 41 | 1+(7.72+7.72i)T+41iT2 |
| 43 | 1+6.33iT−43T2 |
| 47 | 1+(−1.63−6.10i)T+(−40.7+23.5i)T2 |
| 53 | 1−6.73iT−53T2 |
| 59 | 1+(−1.42−5.32i)T+(−51.0+29.5i)T2 |
| 61 | 1−6.36T+61T2 |
| 67 | 1+(−5.85+5.85i)T−67iT2 |
| 71 | 1+(−1.65+6.19i)T+(−61.4−35.5i)T2 |
| 73 | 1+(−10.6−10.6i)T+73iT2 |
| 79 | 1+(1.30−2.26i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−11.0+2.96i)T+(71.8−41.5i)T2 |
| 89 | 1+(2.10+7.84i)T+(−77.0+44.5i)T2 |
| 97 | 1+(11.9−11.9i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.34677667551973034690658898170, −10.64235809335415037471737893923, −10.14144838175629058430742297879, −9.097128861766953144082384357774, −8.294048577081804983738467066579, −6.80337730026939349857853110302, −5.73933516661744511180203917123, −4.92173585474351978694816123815, −3.77965339584959208214003946362, −0.61751188035414591690531273272,
2.10753077327172893559920098240, 3.14533583434654597465246969895, 5.14191632529005620382344376084, 6.49464815641745262480805507677, 6.94568728608342048674683079762, 8.471426248949811056733666615116, 9.695760974095238787466710562327, 10.56098195498160024470776756554, 11.34702760839053301146461651202, 12.20581935246150703566446784062