L(s) = 1 | + (−0.258 − 0.965i)2-s + (−1.15 − 1.29i)3-s + (−0.866 + 0.499i)4-s + (0.817 + 3.04i)5-s + (−0.947 + 1.44i)6-s + (−2.08 + 2.08i)7-s + (0.707 + 0.707i)8-s + (−0.330 + 2.98i)9-s + (2.73 − 1.57i)10-s + (−0.842 + 0.225i)11-s + (1.64 + 0.539i)12-s + (−0.0715 + 3.60i)13-s + (2.54 + 1.47i)14-s + (2.99 − 4.57i)15-s + (0.500 − 0.866i)16-s + (1.80 − 3.11i)17-s + ⋯ |
L(s) = 1 | + (−0.183 − 0.683i)2-s + (−0.666 − 0.745i)3-s + (−0.433 + 0.249i)4-s + (0.365 + 1.36i)5-s + (−0.386 + 0.591i)6-s + (−0.786 + 0.786i)7-s + (0.249 + 0.249i)8-s + (−0.110 + 0.993i)9-s + (0.864 − 0.499i)10-s + (−0.254 + 0.0680i)11-s + (0.475 + 0.155i)12-s + (−0.0198 + 0.999i)13-s + (0.681 + 0.393i)14-s + (0.772 − 1.18i)15-s + (0.125 − 0.216i)16-s + (0.436 − 0.756i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.646 - 0.763i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.646 - 0.763i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.599057 + 0.277721i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.599057 + 0.277721i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.258 + 0.965i)T \) |
| 3 | \( 1 + (1.15 + 1.29i)T \) |
| 13 | \( 1 + (0.0715 - 3.60i)T \) |
good | 5 | \( 1 + (-0.817 - 3.04i)T + (-4.33 + 2.5i)T^{2} \) |
| 7 | \( 1 + (2.08 - 2.08i)T - 7iT^{2} \) |
| 11 | \( 1 + (0.842 - 0.225i)T + (9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (-1.80 + 3.11i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (4.90 - 1.31i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 - 3.73T + 23T^{2} \) |
| 29 | \( 1 + (-7.44 - 4.29i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (4.96 - 1.33i)T + (26.8 - 15.5i)T^{2} \) |
| 37 | \( 1 + (5.77 + 1.54i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (7.72 - 7.72i)T - 41iT^{2} \) |
| 43 | \( 1 - 6.33iT - 43T^{2} \) |
| 47 | \( 1 + (-1.63 + 6.10i)T + (-40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + 6.73iT - 53T^{2} \) |
| 59 | \( 1 + (-1.42 + 5.32i)T + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 - 6.36T + 61T^{2} \) |
| 67 | \( 1 + (-5.85 - 5.85i)T + 67iT^{2} \) |
| 71 | \( 1 + (-1.65 - 6.19i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (-10.6 + 10.6i)T - 73iT^{2} \) |
| 79 | \( 1 + (1.30 + 2.26i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-11.0 - 2.96i)T + (71.8 + 41.5i)T^{2} \) |
| 89 | \( 1 + (2.10 - 7.84i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (11.9 + 11.9i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.20581935246150703566446784062, −11.34702760839053301146461651202, −10.56098195498160024470776756554, −9.695760974095238787466710562327, −8.471426248949811056733666615116, −6.94568728608342048674683079762, −6.49464815641745262480805507677, −5.14191632529005620382344376084, −3.14533583434654597465246969895, −2.10753077327172893559920098240,
0.61751188035414591690531273272, 3.77965339584959208214003946362, 4.92173585474351978694816123815, 5.73933516661744511180203917123, 6.80337730026939349857853110302, 8.294048577081804983738467066579, 9.097128861766953144082384357774, 10.14144838175629058430742297879, 10.64235809335415037471737893923, 12.34677667551973034690658898170