L(s) = 1 | + (0.866 − 0.5i)2-s + (−0.579 + 1.63i)3-s + (0.499 − 0.866i)4-s + (3.32 + 1.91i)5-s + (0.314 + 1.70i)6-s + (−2.91 + 1.68i)7-s − 0.999i·8-s + (−2.32 − 1.89i)9-s + 3.83·10-s + (−1.72 + 0.995i)11-s + (1.12 + 1.31i)12-s + (3.49 − 0.880i)13-s + (−1.68 + 2.91i)14-s + (−5.05 + 4.31i)15-s + (−0.5 − 0.866i)16-s + 2.60·17-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (−0.334 + 0.942i)3-s + (0.249 − 0.433i)4-s + (1.48 + 0.857i)5-s + (0.128 + 0.695i)6-s + (−1.10 + 0.636i)7-s − 0.353i·8-s + (−0.776 − 0.630i)9-s + 1.21·10-s + (−0.520 + 0.300i)11-s + (0.324 + 0.380i)12-s + (0.969 − 0.244i)13-s + (−0.450 + 0.779i)14-s + (−1.30 + 1.11i)15-s + (−0.125 − 0.216i)16-s + 0.630·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.706 - 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.706 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.57429 + 0.652928i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.57429 + 0.652928i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 3 | \( 1 + (0.579 - 1.63i)T \) |
| 13 | \( 1 + (-3.49 + 0.880i)T \) |
good | 5 | \( 1 + (-3.32 - 1.91i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (2.91 - 1.68i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1.72 - 0.995i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 - 2.60T + 17T^{2} \) |
| 19 | \( 1 + 1.99iT - 19T^{2} \) |
| 23 | \( 1 + (-2.13 + 3.70i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4.37 + 7.57i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-4.57 - 2.64i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 5.08iT - 37T^{2} \) |
| 41 | \( 1 + (7.13 + 4.12i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (5.13 + 8.88i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.22 + 2.44i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 9.16T + 53T^{2} \) |
| 59 | \( 1 + (6.33 + 3.65i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.63 - 9.76i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.90 - 2.83i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 1.94iT - 71T^{2} \) |
| 73 | \( 1 + 8.41iT - 73T^{2} \) |
| 79 | \( 1 + (-2.97 - 5.15i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (2.03 - 1.17i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 6.28iT - 89T^{2} \) |
| 97 | \( 1 + (8.92 - 5.15i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.32965220508879958296985903473, −11.16603330349314167157988469679, −10.20371519982264707872484203633, −9.904903600551229124411524118908, −8.833792789509025457682747610380, −6.63160030017111797997589659194, −5.99774277640459988646154583221, −5.17684796044451166490612489766, −3.43855660486355485308663168415, −2.53667735561754364405172692476,
1.46678260321413163402632281744, 3.22899845136571553868141625409, 5.13969813407119300144359663660, 5.97464459292821714101500710895, 6.62770271906413540285217847288, 7.902048028967581353837033433382, 9.077153564038840853151108430242, 10.12295325612518342005268557569, 11.26872888490478276080157782076, 12.67743216913891803115338029828