L(s) = 1 | + (0.866 − 0.5i)2-s + (−0.579 + 1.63i)3-s + (0.499 − 0.866i)4-s + (3.32 + 1.91i)5-s + (0.314 + 1.70i)6-s + (−2.91 + 1.68i)7-s − 0.999i·8-s + (−2.32 − 1.89i)9-s + 3.83·10-s + (−1.72 + 0.995i)11-s + (1.12 + 1.31i)12-s + (3.49 − 0.880i)13-s + (−1.68 + 2.91i)14-s + (−5.05 + 4.31i)15-s + (−0.5 − 0.866i)16-s + 2.60·17-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (−0.334 + 0.942i)3-s + (0.249 − 0.433i)4-s + (1.48 + 0.857i)5-s + (0.128 + 0.695i)6-s + (−1.10 + 0.636i)7-s − 0.353i·8-s + (−0.776 − 0.630i)9-s + 1.21·10-s + (−0.520 + 0.300i)11-s + (0.324 + 0.380i)12-s + (0.969 − 0.244i)13-s + (−0.450 + 0.779i)14-s + (−1.30 + 1.11i)15-s + (−0.125 − 0.216i)16-s + 0.630·17-s + ⋯ |
Λ(s)=(=(234s/2ΓC(s)L(s)(0.706−0.707i)Λ(2−s)
Λ(s)=(=(234s/2ΓC(s+1/2)L(s)(0.706−0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
234
= 2⋅32⋅13
|
Sign: |
0.706−0.707i
|
Analytic conductor: |
1.86849 |
Root analytic conductor: |
1.36693 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ234(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 234, ( :1/2), 0.706−0.707i)
|
Particular Values
L(1) |
≈ |
1.57429+0.652928i |
L(21) |
≈ |
1.57429+0.652928i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866+0.5i)T |
| 3 | 1+(0.579−1.63i)T |
| 13 | 1+(−3.49+0.880i)T |
good | 5 | 1+(−3.32−1.91i)T+(2.5+4.33i)T2 |
| 7 | 1+(2.91−1.68i)T+(3.5−6.06i)T2 |
| 11 | 1+(1.72−0.995i)T+(5.5−9.52i)T2 |
| 17 | 1−2.60T+17T2 |
| 19 | 1+1.99iT−19T2 |
| 23 | 1+(−2.13+3.70i)T+(−11.5−19.9i)T2 |
| 29 | 1+(4.37+7.57i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−4.57−2.64i)T+(15.5+26.8i)T2 |
| 37 | 1−5.08iT−37T2 |
| 41 | 1+(7.13+4.12i)T+(20.5+35.5i)T2 |
| 43 | 1+(5.13+8.88i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−4.22+2.44i)T+(23.5−40.7i)T2 |
| 53 | 1+9.16T+53T2 |
| 59 | 1+(6.33+3.65i)T+(29.5+51.0i)T2 |
| 61 | 1+(−5.63−9.76i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−4.90−2.83i)T+(33.5+58.0i)T2 |
| 71 | 1−1.94iT−71T2 |
| 73 | 1+8.41iT−73T2 |
| 79 | 1+(−2.97−5.15i)T+(−39.5+68.4i)T2 |
| 83 | 1+(2.03−1.17i)T+(41.5−71.8i)T2 |
| 89 | 1−6.28iT−89T2 |
| 97 | 1+(8.92−5.15i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.32965220508879958296985903473, −11.16603330349314167157988469679, −10.20371519982264707872484203633, −9.904903600551229124411524118908, −8.833792789509025457682747610380, −6.63160030017111797997589659194, −5.99774277640459988646154583221, −5.17684796044451166490612489766, −3.43855660486355485308663168415, −2.53667735561754364405172692476,
1.46678260321413163402632281744, 3.22899845136571553868141625409, 5.13969813407119300144359663660, 5.97464459292821714101500710895, 6.62770271906413540285217847288, 7.902048028967581353837033433382, 9.077153564038840853151108430242, 10.12295325612518342005268557569, 11.26872888490478276080157782076, 12.67743216913891803115338029828