| L(s) = 1 | + (0.866 + 0.5i)2-s + (−0.579 − 1.63i)3-s + (0.499 + 0.866i)4-s + (3.32 − 1.91i)5-s + (0.314 − 1.70i)6-s + (−2.91 − 1.68i)7-s + 0.999i·8-s + (−2.32 + 1.89i)9-s + 3.83·10-s + (−1.72 − 0.995i)11-s + (1.12 − 1.31i)12-s + (3.49 + 0.880i)13-s + (−1.68 − 2.91i)14-s + (−5.05 − 4.31i)15-s + (−0.5 + 0.866i)16-s + 2.60·17-s + ⋯ |
| L(s) = 1 | + (0.612 + 0.353i)2-s + (−0.334 − 0.942i)3-s + (0.249 + 0.433i)4-s + (1.48 − 0.857i)5-s + (0.128 − 0.695i)6-s + (−1.10 − 0.636i)7-s + 0.353i·8-s + (−0.776 + 0.630i)9-s + 1.21·10-s + (−0.520 − 0.300i)11-s + (0.324 − 0.380i)12-s + (0.969 + 0.244i)13-s + (−0.450 − 0.779i)14-s + (−1.30 − 1.11i)15-s + (−0.125 + 0.216i)16-s + 0.630·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.706 + 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.706 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.57429 - 0.652928i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.57429 - 0.652928i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 3 | \( 1 + (0.579 + 1.63i)T \) |
| 13 | \( 1 + (-3.49 - 0.880i)T \) |
| good | 5 | \( 1 + (-3.32 + 1.91i)T + (2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (2.91 + 1.68i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (1.72 + 0.995i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 - 2.60T + 17T^{2} \) |
| 19 | \( 1 - 1.99iT - 19T^{2} \) |
| 23 | \( 1 + (-2.13 - 3.70i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (4.37 - 7.57i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-4.57 + 2.64i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 5.08iT - 37T^{2} \) |
| 41 | \( 1 + (7.13 - 4.12i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (5.13 - 8.88i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.22 - 2.44i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 9.16T + 53T^{2} \) |
| 59 | \( 1 + (6.33 - 3.65i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.63 + 9.76i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.90 + 2.83i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 1.94iT - 71T^{2} \) |
| 73 | \( 1 - 8.41iT - 73T^{2} \) |
| 79 | \( 1 + (-2.97 + 5.15i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (2.03 + 1.17i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 6.28iT - 89T^{2} \) |
| 97 | \( 1 + (8.92 + 5.15i)T + (48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.67743216913891803115338029828, −11.26872888490478276080157782076, −10.12295325612518342005268557569, −9.077153564038840853151108430242, −7.902048028967581353837033433382, −6.62770271906413540285217847288, −5.97464459292821714101500710895, −5.13969813407119300144359663660, −3.22899845136571553868141625409, −1.46678260321413163402632281744,
2.53667735561754364405172692476, 3.43855660486355485308663168415, 5.17684796044451166490612489766, 5.99774277640459988646154583221, 6.63160030017111797997589659194, 8.833792789509025457682747610380, 9.904903600551229124411524118908, 10.20371519982264707872484203633, 11.16603330349314167157988469679, 12.32965220508879958296985903473