Properties

Label 2-2325-1.1-c1-0-52
Degree $2$
Conductor $2325$
Sign $-1$
Analytic cond. $18.5652$
Root an. cond. $4.30873$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·4-s + 9-s − 3·11-s + 2·12-s + 4·13-s + 4·16-s − 7·17-s + 3·19-s + 5·23-s − 27-s + 29-s + 31-s + 3·33-s − 2·36-s − 4·39-s − 8·41-s + 10·43-s + 6·44-s − 2·47-s − 4·48-s − 7·49-s + 7·51-s − 8·52-s + 9·53-s − 3·57-s − 12·59-s + ⋯
L(s)  = 1  − 0.577·3-s − 4-s + 1/3·9-s − 0.904·11-s + 0.577·12-s + 1.10·13-s + 16-s − 1.69·17-s + 0.688·19-s + 1.04·23-s − 0.192·27-s + 0.185·29-s + 0.179·31-s + 0.522·33-s − 1/3·36-s − 0.640·39-s − 1.24·41-s + 1.52·43-s + 0.904·44-s − 0.291·47-s − 0.577·48-s − 49-s + 0.980·51-s − 1.10·52-s + 1.23·53-s − 0.397·57-s − 1.56·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2325\)    =    \(3 \cdot 5^{2} \cdot 31\)
Sign: $-1$
Analytic conductor: \(18.5652\)
Root analytic conductor: \(4.30873\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2325,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 + T \)
5 \( 1 \)
31 \( 1 - T \)
good2 \( 1 + p T^{2} \) 1.2.a
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 - 5 T + p T^{2} \) 1.23.af
29 \( 1 - T + p T^{2} \) 1.29.ab
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 3 T + p T^{2} \) 1.83.d
89 \( 1 - 7 T + p T^{2} \) 1.89.ah
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.715829257419871488645667737527, −7.959803112525176802986063306805, −7.01585964897262821462622218363, −6.16739189621743937331013492260, −5.32928526515918438343438102704, −4.70629894029881924930811799521, −3.88557735981293975130711516687, −2.80527072327272521157645860615, −1.27684762329111507084674586699, 0, 1.27684762329111507084674586699, 2.80527072327272521157645860615, 3.88557735981293975130711516687, 4.70629894029881924930811799521, 5.32928526515918438343438102704, 6.16739189621743937331013492260, 7.01585964897262821462622218363, 7.959803112525176802986063306805, 8.715829257419871488645667737527

Graph of the $Z$-function along the critical line