L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.642 + 0.766i)3-s + (0.499 − 0.866i)4-s + (0.342 − 0.939i)5-s + (−0.939 − 0.342i)6-s + 0.999i·8-s + (−0.173 + 0.984i)9-s + (0.173 + 0.984i)10-s + (0.984 − 0.173i)12-s + (0.939 − 0.342i)15-s + (−0.5 − 0.866i)16-s + (0.342 + 1.93i)17-s + (−0.342 − 0.939i)18-s + (0.766 − 0.642i)19-s + (−0.642 − 0.766i)20-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.642 + 0.766i)3-s + (0.499 − 0.866i)4-s + (0.342 − 0.939i)5-s + (−0.939 − 0.342i)6-s + 0.999i·8-s + (−0.173 + 0.984i)9-s + (0.173 + 0.984i)10-s + (0.984 − 0.173i)12-s + (0.939 − 0.342i)15-s + (−0.5 − 0.866i)16-s + (0.342 + 1.93i)17-s + (−0.342 − 0.939i)18-s + (0.766 − 0.642i)19-s + (−0.642 − 0.766i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.479 - 0.877i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.479 - 0.877i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.075760311\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.075760311\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 + (-0.642 - 0.766i)T \) |
| 5 | \( 1 + (-0.342 + 0.939i)T \) |
| 19 | \( 1 + (-0.766 + 0.642i)T \) |
good | 7 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 17 | \( 1 + (-0.342 - 1.93i)T + (-0.939 + 0.342i)T^{2} \) |
| 23 | \( 1 + (-0.342 - 0.939i)T + (-0.766 + 0.642i)T^{2} \) |
| 29 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 31 | \( 1 + (-0.766 + 1.32i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (0.173 - 0.984i)T^{2} \) |
| 43 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 47 | \( 1 + (1.85 + 0.326i)T + (0.939 + 0.342i)T^{2} \) |
| 53 | \( 1 + (-1.85 + 0.673i)T + (0.766 - 0.642i)T^{2} \) |
| 59 | \( 1 + (-0.939 + 0.342i)T^{2} \) |
| 61 | \( 1 + (-0.592 - 1.62i)T + (-0.766 + 0.642i)T^{2} \) |
| 67 | \( 1 + (-0.939 - 0.342i)T^{2} \) |
| 71 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 73 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 79 | \( 1 + (-0.766 + 0.642i)T + (0.173 - 0.984i)T^{2} \) |
| 83 | \( 1 + (-0.642 + 1.11i)T + (-0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (0.173 + 0.984i)T^{2} \) |
| 97 | \( 1 + (-0.939 + 0.342i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.272580960796440431289014409051, −8.574669254605632004379563649016, −8.094576019910047102200806130463, −7.33602156034883850545157319875, −6.09932249267384173965400438980, −5.49129435748860370801831110888, −4.67039949081327516220643547681, −3.68154581614383728359581236045, −2.36681037743054885810444304148, −1.34121011361084899678319738886,
1.06419783189964700216370013293, 2.30749605566216610043818485367, 2.93383514735622715000887810722, 3.62913989394797621275546760534, 5.17567725146148471006420647956, 6.49357198720502056771401483053, 6.91159832902721454151533176968, 7.59806707470813588638401233057, 8.287518673805953551301631698842, 9.147218906758228376117190687346