Properties

Label 2280.1739
Modulus $2280$
Conductor $2280$
Order $18$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2280, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([9,9,9,9,17]))
 
Copy content pari:[g,chi] = znchar(Mod(1739,2280))
 

Basic properties

Modulus: \(2280\)
Conductor: \(2280\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(18\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2280.ea

\(\chi_{2280}(59,\cdot)\) \(\chi_{2280}(299,\cdot)\) \(\chi_{2280}(659,\cdot)\) \(\chi_{2280}(1739,\cdot)\) \(\chi_{2280}(1979,\cdot)\) \(\chi_{2280}(2219,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

\((1711,1141,761,457,1921)\) → \((-1,-1,-1,-1,e\left(\frac{17}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 2280 }(1739, a) \) \(-1\)\(1\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{2}{3}\right)\)\(-1\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{11}{18}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2280 }(1739,a) \;\) at \(\;a = \) e.g. 2