L(s) = 1 | − i·2-s − i·3-s − 4-s + 5-s − 6-s + i·8-s − 9-s − i·10-s + i·12-s − 2i·13-s − i·15-s + 16-s + i·18-s − 19-s − 20-s + ⋯ |
L(s) = 1 | − i·2-s − i·3-s − 4-s + 5-s − 6-s + i·8-s − 9-s − i·10-s + i·12-s − 2i·13-s − i·15-s + 16-s + i·18-s − 19-s − 20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.093469538\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.093469538\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 3 | \( 1 + iT \) |
| 5 | \( 1 - T \) |
| 19 | \( 1 + T \) |
good | 7 | \( 1 + T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + 2iT - T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + 2iT - T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.858508389841948373469563998582, −8.185629327418117794144878179685, −7.45720791345826000113438576396, −6.26285437141765876776403317826, −5.66036763978492244613308716832, −4.96374147583365659356249308784, −3.54119215764471194177932792966, −2.65739763368455396958493654866, −1.95740304706196417965702734672, −0.75667258904789512891001073495,
1.83677336623423808097839471787, 3.21260068002483244148863769311, 4.41884089222829078716743584806, 4.70034483020557050021506725365, 5.77709219881919021514761229297, 6.41119860895608522816879231781, 6.99149235018699872112973281628, 8.365430018495659700704419354828, 8.769929631455492155954184338548, 9.606035818896037492644601741008