Properties

Label 2.2280.8t11.b
Dimension $2$
Group $Q_8:C_2$
Conductor $2280$
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:\(2280\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 19 \)
Artin number field: Galois closure of 8.0.46915560000.2
Galois orbit size: $2$
Smallest permutation container: $Q_8:C_2$
Parity: odd
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{30}, \sqrt{-95})\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 101 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 3 + 97\cdot 101 + 95\cdot 101^{2} + 88\cdot 101^{3} + 23\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 4 + 10\cdot 101 + 6\cdot 101^{2} + 59\cdot 101^{3} + 61\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 13 + 60\cdot 101 + 80\cdot 101^{2} + 25\cdot 101^{3} + 10\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 35 + 20\cdot 101 + 32\cdot 101^{2} + 5\cdot 101^{3} + 70\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 66 + 80\cdot 101 + 68\cdot 101^{2} + 95\cdot 101^{3} + 30\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 88 + 40\cdot 101 + 20\cdot 101^{2} + 75\cdot 101^{3} + 90\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 97 + 90\cdot 101 + 94\cdot 101^{2} + 41\cdot 101^{3} + 39\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 98 + 3\cdot 101 + 5\cdot 101^{2} + 12\cdot 101^{3} + 77\cdot 101^{4} +O(101^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,8,5)(2,6,7,3)$
$(1,4,8,5)(2,3,7,6)$
$(1,7,8,2)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$2$ $2$ $(1,6)(2,4)(3,8)(5,7)$ $0$ $0$
$2$ $2$ $(2,7)(3,6)$ $0$ $0$
$2$ $2$ $(1,7)(2,8)(3,5)(4,6)$ $0$ $0$
$1$ $4$ $(1,4,8,5)(2,3,7,6)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,5,8,4)(2,6,7,3)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,7,8,2)(3,4,6,5)$ $0$ $0$
$2$ $4$ $(1,4,8,5)(2,6,7,3)$ $0$ $0$
$2$ $4$ $(1,6,8,3)(2,5,7,4)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.