L(s) = 1 | − 0.879·2-s + (−1.70 − 0.300i)3-s − 1.22·4-s + (0.673 − 1.16i)5-s + (1.49 + 0.264i)6-s + 2.83·8-s + (2.81 + 1.02i)9-s + (−0.592 + 1.02i)10-s + (−0.826 − 1.43i)11-s + (2.09 + 0.368i)12-s + (−1.68 − 2.91i)13-s + (−1.49 + 1.78i)15-s − 0.0418·16-s + (0.233 − 0.405i)17-s + (−2.47 − 0.902i)18-s + (−1.61 − 2.79i)19-s + ⋯ |
L(s) = 1 | − 0.621·2-s + (−0.984 − 0.173i)3-s − 0.613·4-s + (0.301 − 0.521i)5-s + (0.612 + 0.107i)6-s + 1.00·8-s + (0.939 + 0.342i)9-s + (−0.187 + 0.324i)10-s + (−0.249 − 0.431i)11-s + (0.604 + 0.106i)12-s + (−0.467 − 0.809i)13-s + (−0.387 + 0.461i)15-s − 0.0104·16-s + (0.0567 − 0.0982i)17-s + (−0.584 − 0.212i)18-s + (−0.370 − 0.641i)19-s + ⋯ |
Λ(s)=(=(441s/2ΓC(s)L(s)(−0.968−0.250i)Λ(2−s)
Λ(s)=(=(441s/2ΓC(s+1/2)L(s)(−0.968−0.250i)Λ(1−s)
Degree: |
2 |
Conductor: |
441
= 32⋅72
|
Sign: |
−0.968−0.250i
|
Analytic conductor: |
3.52140 |
Root analytic conductor: |
1.87654 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ441(214,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 441, ( :1/2), −0.968−0.250i)
|
Particular Values
L(1) |
≈ |
0.0107471+0.0843349i |
L(21) |
≈ |
0.0107471+0.0843349i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.70+0.300i)T |
| 7 | 1 |
good | 2 | 1+0.879T+2T2 |
| 5 | 1+(−0.673+1.16i)T+(−2.5−4.33i)T2 |
| 11 | 1+(0.826+1.43i)T+(−5.5+9.52i)T2 |
| 13 | 1+(1.68+2.91i)T+(−6.5+11.2i)T2 |
| 17 | 1+(−0.233+0.405i)T+(−8.5−14.7i)T2 |
| 19 | 1+(1.61+2.79i)T+(−9.5+16.4i)T2 |
| 23 | 1+(4.47−7.74i)T+(−11.5−19.9i)T2 |
| 29 | 1+(3.13−5.42i)T+(−14.5−25.1i)T2 |
| 31 | 1+9.23T+31T2 |
| 37 | 1+(4.61+7.99i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−1.70−2.95i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−2.20+3.82i)T+(−21.5−37.2i)T2 |
| 47 | 1+9.35T+47T2 |
| 53 | 1+(−0.286+0.497i)T+(−26.5−45.8i)T2 |
| 59 | 1−10.3T+59T2 |
| 61 | 1+7.63T+61T2 |
| 67 | 1−0.596T+67T2 |
| 71 | 1+0.554T+71T2 |
| 73 | 1+(−1.02+1.77i)T+(−36.5−63.2i)T2 |
| 79 | 1+2.40T+79T2 |
| 83 | 1+(7.52−13.0i)T+(−41.5−71.8i)T2 |
| 89 | 1+(−4.54−7.86i)T+(−44.5+77.0i)T2 |
| 97 | 1+(0.949−1.64i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.63185656846347446293502046428, −9.680710951458862262947061457276, −9.013694290153013476667875447271, −7.85405655797020329254002825004, −7.11768679756588092783429912513, −5.46928973068733747327219655113, −5.26757087448221937690466599494, −3.80868291453927810432760875015, −1.57707763972397306361969179754, −0.07730527132022176145649915172,
1.92525533308091082059949117905, 4.04189447426622376999870256959, 4.84757211110734950227638390386, 6.05580858432788678072738000084, 6.95276772005982495214741309747, 7.977274873198901111298825283497, 9.102121994355509701997388345539, 10.11362013257539739646320478632, 10.32490200106490671546109271475, 11.42461451895730537777692912459