L(s) = 1 | − 0.879·2-s + (−1.70 + 0.300i)3-s − 1.22·4-s + (0.673 + 1.16i)5-s + (1.49 − 0.264i)6-s + 2.83·8-s + (2.81 − 1.02i)9-s + (−0.592 − 1.02i)10-s + (−0.826 + 1.43i)11-s + (2.09 − 0.368i)12-s + (−1.68 + 2.91i)13-s + (−1.49 − 1.78i)15-s − 0.0418·16-s + (0.233 + 0.405i)17-s + (−2.47 + 0.902i)18-s + (−1.61 + 2.79i)19-s + ⋯ |
L(s) = 1 | − 0.621·2-s + (−0.984 + 0.173i)3-s − 0.613·4-s + (0.301 + 0.521i)5-s + (0.612 − 0.107i)6-s + 1.00·8-s + (0.939 − 0.342i)9-s + (−0.187 − 0.324i)10-s + (−0.249 + 0.431i)11-s + (0.604 − 0.106i)12-s + (−0.467 + 0.809i)13-s + (−0.387 − 0.461i)15-s − 0.0104·16-s + (0.0567 + 0.0982i)17-s + (−0.584 + 0.212i)18-s + (−0.370 + 0.641i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.968 + 0.250i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.968 + 0.250i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0107471 - 0.0843349i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0107471 - 0.0843349i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.70 - 0.300i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + 0.879T + 2T^{2} \) |
| 5 | \( 1 + (-0.673 - 1.16i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (0.826 - 1.43i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1.68 - 2.91i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.233 - 0.405i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.61 - 2.79i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (4.47 + 7.74i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3.13 + 5.42i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 9.23T + 31T^{2} \) |
| 37 | \( 1 + (4.61 - 7.99i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.70 + 2.95i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.20 - 3.82i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 9.35T + 47T^{2} \) |
| 53 | \( 1 + (-0.286 - 0.497i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 - 10.3T + 59T^{2} \) |
| 61 | \( 1 + 7.63T + 61T^{2} \) |
| 67 | \( 1 - 0.596T + 67T^{2} \) |
| 71 | \( 1 + 0.554T + 71T^{2} \) |
| 73 | \( 1 + (-1.02 - 1.77i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + 2.40T + 79T^{2} \) |
| 83 | \( 1 + (7.52 + 13.0i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-4.54 + 7.86i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (0.949 + 1.64i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.42461451895730537777692912459, −10.32490200106490671546109271475, −10.11362013257539739646320478632, −9.102121994355509701997388345539, −7.977274873198901111298825283497, −6.95276772005982495214741309747, −6.05580858432788678072738000084, −4.84757211110734950227638390386, −4.04189447426622376999870256959, −1.92525533308091082059949117905,
0.07730527132022176145649915172, 1.57707763972397306361969179754, 3.80868291453927810432760875015, 5.26757087448221937690466599494, 5.46928973068733747327219655113, 7.11768679756588092783429912513, 7.85405655797020329254002825004, 9.013694290153013476667875447271, 9.680710951458862262947061457276, 10.63185656846347446293502046428