Properties

Label 2-2175-87.86-c0-0-12
Degree $2$
Conductor $2175$
Sign $0.707 - 0.707i$
Analytic cond. $1.08546$
Root an. cond. $1.04185$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.41·2-s + (0.707 + 0.707i)3-s + 1.00·4-s + (1.00 + 1.00i)6-s + 1.00i·9-s + (0.707 + 0.707i)12-s − 0.999·16-s + 1.41·17-s + 1.41i·18-s + (−0.707 + 0.707i)27-s i·29-s − 1.41·32-s + 2.00·34-s + 1.00i·36-s + 1.41i·37-s + ⋯
L(s)  = 1  + 1.41·2-s + (0.707 + 0.707i)3-s + 1.00·4-s + (1.00 + 1.00i)6-s + 1.00i·9-s + (0.707 + 0.707i)12-s − 0.999·16-s + 1.41·17-s + 1.41i·18-s + (−0.707 + 0.707i)27-s i·29-s − 1.41·32-s + 2.00·34-s + 1.00i·36-s + 1.41i·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $0.707 - 0.707i$
Analytic conductor: \(1.08546\)
Root analytic conductor: \(1.04185\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2175} (1826, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2175,\ (\ :0),\ 0.707 - 0.707i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.935000948\)
\(L(\frac12)\) \(\approx\) \(2.935000948\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.707 - 0.707i)T \)
5 \( 1 \)
29 \( 1 + iT \)
good2 \( 1 - 1.41T + T^{2} \)
7 \( 1 + T^{2} \)
11 \( 1 + T^{2} \)
13 \( 1 + T^{2} \)
17 \( 1 - 1.41T + T^{2} \)
19 \( 1 - T^{2} \)
23 \( 1 - T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 - 1.41iT - T^{2} \)
41 \( 1 + T^{2} \)
43 \( 1 + 1.41iT - T^{2} \)
47 \( 1 + 1.41T + T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 + 2iT - T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 + T^{2} \)
71 \( 1 + 2iT - T^{2} \)
73 \( 1 - 1.41iT - T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 + T^{2} \)
97 \( 1 + 1.41iT - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.556974442679638383688155829194, −8.463113385973294927159560564195, −7.87807054493720087823055555097, −6.82581002725355237866839870875, −5.90567529884247538508891719902, −5.12524807159713461958350129817, −4.53279872115235031684175581565, −3.54128174111645860228937893763, −3.12826316079474454733365428903, −1.97754050937281310951466859758, 1.47067445861492531573189272021, 2.72157005976622050768543625316, 3.34302047631195795110182512882, 4.15364416745678358955646277686, 5.19891902844400130386375685940, 5.91704177012419885978283356177, 6.69436151736711633518903983827, 7.45840512875108568941140390961, 8.210828407104074380499983712850, 9.109776717196761230132872383499

Graph of the $Z$-function along the critical line