L(s) = 1 | + 1.41·2-s + (0.707 + 0.707i)3-s + 1.00·4-s + (1.00 + 1.00i)6-s + 1.00i·9-s + (0.707 + 0.707i)12-s − 0.999·16-s + 1.41·17-s + 1.41i·18-s + (−0.707 + 0.707i)27-s − i·29-s − 1.41·32-s + 2.00·34-s + 1.00i·36-s + 1.41i·37-s + ⋯ |
L(s) = 1 | + 1.41·2-s + (0.707 + 0.707i)3-s + 1.00·4-s + (1.00 + 1.00i)6-s + 1.00i·9-s + (0.707 + 0.707i)12-s − 0.999·16-s + 1.41·17-s + 1.41i·18-s + (−0.707 + 0.707i)27-s − i·29-s − 1.41·32-s + 2.00·34-s + 1.00i·36-s + 1.41i·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.935000948\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.935000948\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.707 - 0.707i)T \) |
| 5 | \( 1 \) |
| 29 | \( 1 + iT \) |
good | 2 | \( 1 - 1.41T + T^{2} \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 - 1.41T + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - 1.41iT - T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + 1.41iT - T^{2} \) |
| 47 | \( 1 + 1.41T + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + 2iT - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + 2iT - T^{2} \) |
| 73 | \( 1 - 1.41iT - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + 1.41iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.556974442679638383688155829194, −8.463113385973294927159560564195, −7.87807054493720087823055555097, −6.82581002725355237866839870875, −5.90567529884247538508891719902, −5.12524807159713461958350129817, −4.53279872115235031684175581565, −3.54128174111645860228937893763, −3.12826316079474454733365428903, −1.97754050937281310951466859758,
1.47067445861492531573189272021, 2.72157005976622050768543625316, 3.34302047631195795110182512882, 4.15364416745678358955646277686, 5.19891902844400130386375685940, 5.91704177012419885978283356177, 6.69436151736711633518903983827, 7.45840512875108568941140390961, 8.210828407104074380499983712850, 9.109776717196761230132872383499