| L(s) = 1 | + 1.41·2-s + (0.707 − 0.707i)3-s + 1.00·4-s + (1.00 − 1.00i)6-s − 1.00i·9-s + (0.707 − 0.707i)12-s − 0.999·16-s + 1.41·17-s − 1.41i·18-s + (−0.707 − 0.707i)27-s + i·29-s − 1.41·32-s + 2.00·34-s − 1.00i·36-s − 1.41i·37-s + ⋯ |
| L(s) = 1 | + 1.41·2-s + (0.707 − 0.707i)3-s + 1.00·4-s + (1.00 − 1.00i)6-s − 1.00i·9-s + (0.707 − 0.707i)12-s − 0.999·16-s + 1.41·17-s − 1.41i·18-s + (−0.707 − 0.707i)27-s + i·29-s − 1.41·32-s + 2.00·34-s − 1.00i·36-s − 1.41i·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(2.935000948\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.935000948\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 5 | \( 1 \) |
| 29 | \( 1 - iT \) |
| good | 2 | \( 1 - 1.41T + T^{2} \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 - 1.41T + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + 1.41iT - T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - 1.41iT - T^{2} \) |
| 47 | \( 1 + 1.41T + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - 2iT - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 - 2iT - T^{2} \) |
| 73 | \( 1 + 1.41iT - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - 1.41iT - T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.109776717196761230132872383499, −8.210828407104074380499983712850, −7.45840512875108568941140390961, −6.69436151736711633518903983827, −5.91704177012419885978283356177, −5.19891902844400130386375685940, −4.15364416745678358955646277686, −3.34302047631195795110182512882, −2.72157005976622050768543625316, −1.47067445861492531573189272021,
1.97754050937281310951466859758, 3.12826316079474454733365428903, 3.54128174111645860228937893763, 4.53279872115235031684175581565, 5.12524807159713461958350129817, 5.90567529884247538508891719902, 6.82581002725355237866839870875, 7.87807054493720087823055555097, 8.463113385973294927159560564195, 9.556974442679638383688155829194