L(s) = 1 | − 0.347i·2-s + i·3-s + 0.879·4-s + 0.347·6-s − 1.87i·7-s − 0.652i·8-s − 9-s − 1.53·11-s + 0.879i·12-s − 0.347i·13-s − 0.652·14-s + 0.652·16-s − 1.53i·17-s + 0.347i·18-s + 1.87·21-s + 0.532i·22-s + ⋯ |
L(s) = 1 | − 0.347i·2-s + i·3-s + 0.879·4-s + 0.347·6-s − 1.87i·7-s − 0.652i·8-s − 9-s − 1.53·11-s + 0.879i·12-s − 0.347i·13-s − 0.652·14-s + 0.652·16-s − 1.53i·17-s + 0.347i·18-s + 1.87·21-s + 0.532i·22-s + ⋯ |
Λ(s)=(=(2175s/2ΓC(s)L(s)(0.447+0.894i)Λ(1−s)
Λ(s)=(=(2175s/2ΓC(s)L(s)(0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
2175
= 3⋅52⋅29
|
Sign: |
0.447+0.894i
|
Analytic conductor: |
1.08546 |
Root analytic conductor: |
1.04185 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2175(2174,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2175, ( :0), 0.447+0.894i)
|
Particular Values
L(21) |
≈ |
1.232522514 |
L(21) |
≈ |
1.232522514 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−iT |
| 5 | 1 |
| 29 | 1−T |
good | 2 | 1+0.347iT−T2 |
| 7 | 1+1.87iT−T2 |
| 11 | 1+1.53T+T2 |
| 13 | 1+0.347iT−T2 |
| 17 | 1+1.53iT−T2 |
| 19 | 1−T2 |
| 23 | 1+T2 |
| 31 | 1−T2 |
| 37 | 1+T2 |
| 41 | 1−T+T2 |
| 43 | 1+T2 |
| 47 | 1−1.87iT−T2 |
| 53 | 1+T2 |
| 59 | 1−T2 |
| 61 | 1−T2 |
| 67 | 1−1.53iT−T2 |
| 71 | 1−T2 |
| 73 | 1+T2 |
| 79 | 1−T2 |
| 83 | 1+T2 |
| 89 | 1−0.347T+T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.554441044523615279202614159107, −8.174871064809424412150866223821, −7.56871105815980012134461545197, −6.95576065887986242762956142598, −5.88289268434447235264471435553, −4.91249079498786374679198883511, −4.23406977267204944449113408011, −3.16310656184559475310269913081, −2.63978715530605962633459164257, −0.811823675829709997785431308179,
1.87237842216213082542263440373, 2.38481037981051107665735447477, 3.17888835556466171006101325012, 5.04957346393575503913048518832, 5.74647972366533448638752400979, 6.18074493988751036527167172600, 6.99113733584762074763094910187, 8.063214235273163556096168692161, 8.224500300559437847655053487270, 9.047179885302402289033225240344