L(s) = 1 | + 0.347i·2-s − i·3-s + 0.879·4-s + 0.347·6-s + 1.87i·7-s + 0.652i·8-s − 9-s − 1.53·11-s − 0.879i·12-s + 0.347i·13-s − 0.652·14-s + 0.652·16-s + 1.53i·17-s − 0.347i·18-s + 1.87·21-s − 0.532i·22-s + ⋯ |
L(s) = 1 | + 0.347i·2-s − i·3-s + 0.879·4-s + 0.347·6-s + 1.87i·7-s + 0.652i·8-s − 9-s − 1.53·11-s − 0.879i·12-s + 0.347i·13-s − 0.652·14-s + 0.652·16-s + 1.53i·17-s − 0.347i·18-s + 1.87·21-s − 0.532i·22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.232522514\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.232522514\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + iT \) |
| 5 | \( 1 \) |
| 29 | \( 1 - T \) |
good | 2 | \( 1 - 0.347iT - T^{2} \) |
| 7 | \( 1 - 1.87iT - T^{2} \) |
| 11 | \( 1 + 1.53T + T^{2} \) |
| 13 | \( 1 - 0.347iT - T^{2} \) |
| 17 | \( 1 - 1.53iT - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 - T + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + 1.87iT - T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + 1.53iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - 0.347T + T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.047179885302402289033225240344, −8.224500300559437847655053487270, −8.063214235273163556096168692161, −6.99113733584762074763094910187, −6.18074493988751036527167172600, −5.74647972366533448638752400979, −5.04957346393575503913048518832, −3.17888835556466171006101325012, −2.38481037981051107665735447477, −1.87237842216213082542263440373,
0.811823675829709997785431308179, 2.63978715530605962633459164257, 3.16310656184559475310269913081, 4.23406977267204944449113408011, 4.91249079498786374679198883511, 5.88289268434447235264471435553, 6.95576065887986242762956142598, 7.56871105815980012134461545197, 8.174871064809424412150866223821, 9.554441044523615279202614159107