L(s) = 1 | + i·5-s − 2.70i·7-s − 0.972·11-s + 13-s + 7.68i·17-s + 2.70i·19-s − 0.972·23-s − 25-s − 1.68i·29-s + 0.972i·31-s + 2.70·35-s − 2.68·37-s + 6i·41-s + 0.972i·43-s + 11.3·47-s + ⋯ |
L(s) = 1 | + 0.447i·5-s − 1.02i·7-s − 0.293·11-s + 0.277·13-s + 1.86i·17-s + 0.620i·19-s − 0.202·23-s − 0.200·25-s − 0.312i·29-s + 0.174i·31-s + 0.457·35-s − 0.441·37-s + 0.937i·41-s + 0.148i·43-s + 1.65·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.5 - 0.866i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.5 - 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.505007595\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.505007595\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 - iT \) |
good | 7 | \( 1 + 2.70iT - 7T^{2} \) |
| 11 | \( 1 + 0.972T + 11T^{2} \) |
| 13 | \( 1 - T + 13T^{2} \) |
| 17 | \( 1 - 7.68iT - 17T^{2} \) |
| 19 | \( 1 - 2.70iT - 19T^{2} \) |
| 23 | \( 1 + 0.972T + 23T^{2} \) |
| 29 | \( 1 + 1.68iT - 29T^{2} \) |
| 31 | \( 1 - 0.972iT - 31T^{2} \) |
| 37 | \( 1 + 2.68T + 37T^{2} \) |
| 41 | \( 1 - 6iT - 41T^{2} \) |
| 43 | \( 1 - 0.972iT - 43T^{2} \) |
| 47 | \( 1 - 11.3T + 47T^{2} \) |
| 53 | \( 1 - 6iT - 53T^{2} \) |
| 59 | \( 1 - 1.94T + 59T^{2} \) |
| 61 | \( 1 - 6.68T + 61T^{2} \) |
| 67 | \( 1 + 11.5iT - 67T^{2} \) |
| 71 | \( 1 - 12.3T + 71T^{2} \) |
| 73 | \( 1 - 8.68T + 73T^{2} \) |
| 79 | \( 1 - 14.0iT - 79T^{2} \) |
| 83 | \( 1 - 10.3T + 83T^{2} \) |
| 89 | \( 1 - 12iT - 89T^{2} \) |
| 97 | \( 1 + 6.68T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.258029285017206990753041936992, −8.155567836246304480042999234975, −7.83311337405910668874865786660, −6.78563703889401615615673227318, −6.20833462817058715802677197562, −5.28269046297040398850126954908, −4.02084505005763448291661651020, −3.69956153251853148014139674587, −2.34552357118876088639618397039, −1.16350646010946162937767706556,
0.58634757129867134202025140046, 2.14847246988671341060390936098, 2.91157625172917142156538653987, 4.10453424469558777576131361202, 5.22577802362742036090487473938, 5.46453264772581385371863096506, 6.66456237424959839897484505324, 7.37749996684709179546081111296, 8.319743127016927451636045062688, 9.027597732273530017236466297714