Properties

Label 2160.2.h.g.431.6
Level $2160$
Weight $2$
Character 2160.431
Analytic conductor $17.248$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2160,2,Mod(431,2160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2160, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2160.431"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2160.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2476868366\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.1731891456.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 9x^{6} + 65x^{4} - 144x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 431.6
Root \(-1.35234 + 0.780776i\) of defining polynomial
Character \(\chi\) \(=\) 2160.431
Dual form 2160.2.h.g.431.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{5} -2.70469i q^{7} -0.972638 q^{11} +1.00000 q^{13} +7.68466i q^{17} +2.70469i q^{19} -0.972638 q^{23} -1.00000 q^{25} -1.68466i q^{29} +0.972638i q^{31} +2.70469 q^{35} -2.68466 q^{37} +6.00000i q^{41} +0.972638i q^{43} +11.3649 q^{47} -0.315342 q^{49} +6.00000i q^{53} -0.972638i q^{55} +1.94528 q^{59} +6.68466 q^{61} +1.00000i q^{65} -11.5782i q^{67} +12.3376 q^{71} +8.68466 q^{73} +2.63068i q^{77} +14.0696i q^{79} +10.3923 q^{83} -7.68466 q^{85} +12.0000i q^{89} -2.70469i q^{91} -2.70469 q^{95} -6.68466 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{13} - 8 q^{25} + 28 q^{37} - 52 q^{49} + 4 q^{61} + 20 q^{73} - 12 q^{85} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) − 2.70469i − 1.02228i −0.859499 0.511138i \(-0.829224\pi\)
0.859499 0.511138i \(-0.170776\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.972638 −0.293261 −0.146631 0.989191i \(-0.546843\pi\)
−0.146631 + 0.989191i \(0.546843\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350 0.138675 0.990338i \(-0.455716\pi\)
0.138675 + 0.990338i \(0.455716\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.68466i 1.86380i 0.362711 + 0.931902i \(0.381851\pi\)
−0.362711 + 0.931902i \(0.618149\pi\)
\(18\) 0 0
\(19\) 2.70469i 0.620498i 0.950655 + 0.310249i \(0.100412\pi\)
−0.950655 + 0.310249i \(0.899588\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.972638 −0.202809 −0.101405 0.994845i \(-0.532334\pi\)
−0.101405 + 0.994845i \(0.532334\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 1.68466i − 0.312833i −0.987691 0.156417i \(-0.950006\pi\)
0.987691 0.156417i \(-0.0499942\pi\)
\(30\) 0 0
\(31\) 0.972638i 0.174691i 0.996178 + 0.0873455i \(0.0278384\pi\)
−0.996178 + 0.0873455i \(0.972162\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.70469 0.457176
\(36\) 0 0
\(37\) −2.68466 −0.441355 −0.220678 0.975347i \(-0.570827\pi\)
−0.220678 + 0.975347i \(0.570827\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.00000i 0.937043i 0.883452 + 0.468521i \(0.155213\pi\)
−0.883452 + 0.468521i \(0.844787\pi\)
\(42\) 0 0
\(43\) 0.972638i 0.148326i 0.997246 + 0.0741630i \(0.0236285\pi\)
−0.997246 + 0.0741630i \(0.976372\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 11.3649 1.65775 0.828874 0.559436i \(-0.188982\pi\)
0.828874 + 0.559436i \(0.188982\pi\)
\(48\) 0 0
\(49\) −0.315342 −0.0450488
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.00000i 0.824163i 0.911147 + 0.412082i \(0.135198\pi\)
−0.911147 + 0.412082i \(0.864802\pi\)
\(54\) 0 0
\(55\) − 0.972638i − 0.131150i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.94528 0.253253 0.126627 0.991950i \(-0.459585\pi\)
0.126627 + 0.991950i \(0.459585\pi\)
\(60\) 0 0
\(61\) 6.68466 0.855883 0.427941 0.903806i \(-0.359239\pi\)
0.427941 + 0.903806i \(0.359239\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.00000i 0.124035i
\(66\) 0 0
\(67\) − 11.5782i − 1.41450i −0.706964 0.707249i \(-0.749936\pi\)
0.706964 0.707249i \(-0.250064\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.3376 1.46420 0.732101 0.681196i \(-0.238540\pi\)
0.732101 + 0.681196i \(0.238540\pi\)
\(72\) 0 0
\(73\) 8.68466 1.01646 0.508231 0.861221i \(-0.330300\pi\)
0.508231 + 0.861221i \(0.330300\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.63068i 0.299794i
\(78\) 0 0
\(79\) 14.0696i 1.58296i 0.611197 + 0.791479i \(0.290688\pi\)
−0.611197 + 0.791479i \(0.709312\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 10.3923 1.14070 0.570352 0.821401i \(-0.306807\pi\)
0.570352 + 0.821401i \(0.306807\pi\)
\(84\) 0 0
\(85\) −7.68466 −0.833518
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 12.0000i 1.27200i 0.771690 + 0.635999i \(0.219412\pi\)
−0.771690 + 0.635999i \(0.780588\pi\)
\(90\) 0 0
\(91\) − 2.70469i − 0.283528i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.70469 −0.277495
\(96\) 0 0
\(97\) −6.68466 −0.678724 −0.339362 0.940656i \(-0.610211\pi\)
−0.339362 + 0.940656i \(0.610211\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.68466i 0.764652i 0.924027 + 0.382326i \(0.124877\pi\)
−0.924027 + 0.382326i \(0.875123\pi\)
\(102\) 0 0
\(103\) − 0.759413i − 0.0748272i −0.999300 0.0374136i \(-0.988088\pi\)
0.999300 0.0374136i \(-0.0119119\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.3376 −1.19272 −0.596359 0.802717i \(-0.703387\pi\)
−0.596359 + 0.802717i \(0.703387\pi\)
\(108\) 0 0
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 13.6847i 1.28734i 0.765301 + 0.643672i \(0.222590\pi\)
−0.765301 + 0.643672i \(0.777410\pi\)
\(114\) 0 0
\(115\) − 0.972638i − 0.0906990i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 20.7846 1.90532
\(120\) 0 0
\(121\) −10.0540 −0.913998
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 1.00000i − 0.0894427i
\(126\) 0 0
\(127\) 10.3923i 0.922168i 0.887357 + 0.461084i \(0.152539\pi\)
−0.887357 + 0.461084i \(0.847461\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −11.3649 −0.992960 −0.496480 0.868048i \(-0.665374\pi\)
−0.496480 + 0.868048i \(0.665374\pi\)
\(132\) 0 0
\(133\) 7.31534 0.634321
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 6.00000i − 0.512615i −0.966595 0.256307i \(-0.917494\pi\)
0.966595 0.256307i \(-0.0825059\pi\)
\(138\) 0 0
\(139\) 9.63289i 0.817051i 0.912747 + 0.408526i \(0.133957\pi\)
−0.912747 + 0.408526i \(0.866043\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.972638 −0.0813361
\(144\) 0 0
\(145\) 1.68466 0.139903
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 23.0540i 1.88866i 0.329007 + 0.944328i \(0.393286\pi\)
−0.329007 + 0.944328i \(0.606714\pi\)
\(150\) 0 0
\(151\) − 10.6055i − 0.863066i −0.902097 0.431533i \(-0.857973\pi\)
0.902097 0.431533i \(-0.142027\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.972638 −0.0781242
\(156\) 0 0
\(157\) 13.0540 1.04182 0.520910 0.853611i \(-0.325593\pi\)
0.520910 + 0.853611i \(0.325593\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.63068i 0.207327i
\(162\) 0 0
\(163\) − 12.1244i − 0.949653i −0.880079 0.474826i \(-0.842511\pi\)
0.880079 0.474826i \(-0.157489\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.94528 −0.150530 −0.0752650 0.997164i \(-0.523980\pi\)
−0.0752650 + 0.997164i \(0.523980\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 2.70469i 0.204455i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −14.2829 −1.06755 −0.533775 0.845626i \(-0.679227\pi\)
−0.533775 + 0.845626i \(0.679227\pi\)
\(180\) 0 0
\(181\) 18.0540 1.34194 0.670971 0.741484i \(-0.265878\pi\)
0.670971 + 0.741484i \(0.265878\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 2.68466i − 0.197380i
\(186\) 0 0
\(187\) − 7.47439i − 0.546582i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 20.7846 1.50392 0.751961 0.659208i \(-0.229108\pi\)
0.751961 + 0.659208i \(0.229108\pi\)
\(192\) 0 0
\(193\) 24.6847 1.77684 0.888420 0.459031i \(-0.151803\pi\)
0.888420 + 0.459031i \(0.151803\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) − 1.73205i − 0.122782i −0.998114 0.0613909i \(-0.980446\pi\)
0.998114 0.0613909i \(-0.0195536\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −4.55648 −0.319802
\(204\) 0 0
\(205\) −6.00000 −0.419058
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 2.63068i − 0.181968i
\(210\) 0 0
\(211\) 11.5782i 0.797074i 0.917152 + 0.398537i \(0.130482\pi\)
−0.917152 + 0.398537i \(0.869518\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.972638 −0.0663334
\(216\) 0 0
\(217\) 2.63068 0.178582
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 7.68466i 0.516926i
\(222\) 0 0
\(223\) − 12.3376i − 0.826186i −0.910689 0.413093i \(-0.864449\pi\)
0.910689 0.413093i \(-0.135551\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 12.3376 0.818874 0.409437 0.912338i \(-0.365725\pi\)
0.409437 + 0.912338i \(0.365725\pi\)
\(228\) 0 0
\(229\) −14.0000 −0.925146 −0.462573 0.886581i \(-0.653074\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 3.36932i − 0.220731i −0.993891 0.110366i \(-0.964798\pi\)
0.993891 0.110366i \(-0.0352022\pi\)
\(234\) 0 0
\(235\) 11.3649i 0.741367i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −12.3376 −0.798052 −0.399026 0.916940i \(-0.630652\pi\)
−0.399026 + 0.916940i \(0.630652\pi\)
\(240\) 0 0
\(241\) 7.00000 0.450910 0.225455 0.974254i \(-0.427613\pi\)
0.225455 + 0.974254i \(0.427613\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 0.315342i − 0.0201464i
\(246\) 0 0
\(247\) 2.70469i 0.172095i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −21.7572 −1.37331 −0.686653 0.726986i \(-0.740921\pi\)
−0.686653 + 0.726986i \(0.740921\pi\)
\(252\) 0 0
\(253\) 0.946025 0.0594761
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7.68466i 0.479356i 0.970852 + 0.239678i \(0.0770418\pi\)
−0.970852 + 0.239678i \(0.922958\pi\)
\(258\) 0 0
\(259\) 7.26117i 0.451187i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 22.7299 1.40158 0.700792 0.713365i \(-0.252830\pi\)
0.700792 + 0.713365i \(0.252830\pi\)
\(264\) 0 0
\(265\) −6.00000 −0.368577
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 23.0540i − 1.40563i −0.711375 0.702813i \(-0.751927\pi\)
0.711375 0.702813i \(-0.248073\pi\)
\(270\) 0 0
\(271\) − 20.0252i − 1.21644i −0.793767 0.608222i \(-0.791883\pi\)
0.793767 0.608222i \(-0.208117\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.972638 0.0586523
\(276\) 0 0
\(277\) −2.00000 −0.120168 −0.0600842 0.998193i \(-0.519137\pi\)
−0.0600842 + 0.998193i \(0.519137\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 27.3693i − 1.63272i −0.577546 0.816358i \(-0.695990\pi\)
0.577546 0.816358i \(-0.304010\pi\)
\(282\) 0 0
\(283\) − 14.2829i − 0.849028i −0.905421 0.424514i \(-0.860445\pi\)
0.905421 0.424514i \(-0.139555\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 16.2281 0.957916
\(288\) 0 0
\(289\) −42.0540 −2.47376
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 9.36932i − 0.547361i −0.961821 0.273681i \(-0.911759\pi\)
0.961821 0.273681i \(-0.0882411\pi\)
\(294\) 0 0
\(295\) 1.94528i 0.113258i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.972638 −0.0562491
\(300\) 0 0
\(301\) 2.63068 0.151630
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 6.68466i 0.382762i
\(306\) 0 0
\(307\) 25.6478i 1.46380i 0.681414 + 0.731899i \(0.261366\pi\)
−0.681414 + 0.731899i \(0.738634\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.94528 0.110306 0.0551532 0.998478i \(-0.482435\pi\)
0.0551532 + 0.998478i \(0.482435\pi\)
\(312\) 0 0
\(313\) 28.0540 1.58570 0.792852 0.609414i \(-0.208595\pi\)
0.792852 + 0.609414i \(0.208595\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.36932i 0.189240i 0.995513 + 0.0946198i \(0.0301636\pi\)
−0.995513 + 0.0946198i \(0.969836\pi\)
\(318\) 0 0
\(319\) 1.63856i 0.0917419i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −20.7846 −1.15649
\(324\) 0 0
\(325\) −1.00000 −0.0554700
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 30.7386i − 1.69468i
\(330\) 0 0
\(331\) 9.63289i 0.529472i 0.964321 + 0.264736i \(0.0852848\pi\)
−0.964321 + 0.264736i \(0.914715\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 11.5782 0.632583
\(336\) 0 0
\(337\) 12.0540 0.656622 0.328311 0.944570i \(-0.393521\pi\)
0.328311 + 0.944570i \(0.393521\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 0.946025i − 0.0512301i
\(342\) 0 0
\(343\) − 18.0799i − 0.976224i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −31.1769 −1.67366 −0.836832 0.547459i \(-0.815595\pi\)
−0.836832 + 0.547459i \(0.815595\pi\)
\(348\) 0 0
\(349\) −20.6847 −1.10722 −0.553612 0.832775i \(-0.686751\pi\)
−0.553612 + 0.832775i \(0.686751\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 31.6847i − 1.68640i −0.537597 0.843202i \(-0.680668\pi\)
0.537597 0.843202i \(-0.319332\pi\)
\(354\) 0 0
\(355\) 12.3376i 0.654811i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 14.2829 0.753820 0.376910 0.926250i \(-0.376987\pi\)
0.376910 + 0.926250i \(0.376987\pi\)
\(360\) 0 0
\(361\) 11.6847 0.614982
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 8.68466i 0.454576i
\(366\) 0 0
\(367\) 1.18586i 0.0619016i 0.999521 + 0.0309508i \(0.00985351\pi\)
−0.999521 + 0.0309508i \(0.990146\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 16.2281 0.842523
\(372\) 0 0
\(373\) 1.63068 0.0844336 0.0422168 0.999108i \(-0.486558\pi\)
0.0422168 + 0.999108i \(0.486558\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 1.68466i − 0.0867643i
\(378\) 0 0
\(379\) − 21.9705i − 1.12855i −0.825588 0.564274i \(-0.809156\pi\)
0.825588 0.564274i \(-0.190844\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −15.2555 −0.779519 −0.389760 0.920917i \(-0.627442\pi\)
−0.389760 + 0.920917i \(0.627442\pi\)
\(384\) 0 0
\(385\) −2.63068 −0.134072
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 19.6847i − 0.998052i −0.866587 0.499026i \(-0.833691\pi\)
0.866587 0.499026i \(-0.166309\pi\)
\(390\) 0 0
\(391\) − 7.47439i − 0.377996i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −14.0696 −0.707920
\(396\) 0 0
\(397\) 25.0540 1.25742 0.628711 0.777639i \(-0.283583\pi\)
0.628711 + 0.777639i \(0.283583\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 6.00000i − 0.299626i −0.988714 0.149813i \(-0.952133\pi\)
0.988714 0.149813i \(-0.0478671\pi\)
\(402\) 0 0
\(403\) 0.972638i 0.0484505i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.61120 0.129432
\(408\) 0 0
\(409\) −17.0000 −0.840596 −0.420298 0.907386i \(-0.638074\pi\)
−0.420298 + 0.907386i \(0.638074\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 5.26137i − 0.258895i
\(414\) 0 0
\(415\) 10.3923i 0.510138i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −34.0948 −1.66564 −0.832821 0.553543i \(-0.813276\pi\)
−0.832821 + 0.553543i \(0.813276\pi\)
\(420\) 0 0
\(421\) 14.6847 0.715686 0.357843 0.933782i \(-0.383512\pi\)
0.357843 + 0.933782i \(0.383512\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 7.68466i − 0.372761i
\(426\) 0 0
\(427\) − 18.0799i − 0.874949i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −38.9580 −1.87654 −0.938271 0.345901i \(-0.887573\pi\)
−0.938271 + 0.345901i \(0.887573\pi\)
\(432\) 0 0
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 2.63068i − 0.125843i
\(438\) 0 0
\(439\) 35.0675i 1.67368i 0.547448 + 0.836839i \(0.315599\pi\)
−0.547448 + 0.836839i \(0.684401\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −30.5110 −1.44962 −0.724810 0.688948i \(-0.758073\pi\)
−0.724810 + 0.688948i \(0.758073\pi\)
\(444\) 0 0
\(445\) −12.0000 −0.568855
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 18.7386i 0.884331i 0.896934 + 0.442165i \(0.145790\pi\)
−0.896934 + 0.442165i \(0.854210\pi\)
\(450\) 0 0
\(451\) − 5.83583i − 0.274798i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2.70469 0.126798
\(456\) 0 0
\(457\) −14.0000 −0.654892 −0.327446 0.944870i \(-0.606188\pi\)
−0.327446 + 0.944870i \(0.606188\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 27.3693i − 1.27472i −0.770568 0.637358i \(-0.780027\pi\)
0.770568 0.637358i \(-0.219973\pi\)
\(462\) 0 0
\(463\) − 0.759413i − 0.0352929i −0.999844 0.0176465i \(-0.994383\pi\)
0.999844 0.0176465i \(-0.00561733\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.94528 0.0900166 0.0450083 0.998987i \(-0.485669\pi\)
0.0450083 + 0.998987i \(0.485669\pi\)
\(468\) 0 0
\(469\) −31.3153 −1.44601
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 0.946025i − 0.0434983i
\(474\) 0 0
\(475\) − 2.70469i − 0.124100i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −10.3923 −0.474837 −0.237418 0.971408i \(-0.576301\pi\)
−0.237418 + 0.971408i \(0.576301\pi\)
\(480\) 0 0
\(481\) −2.68466 −0.122410
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 6.68466i − 0.303535i
\(486\) 0 0
\(487\) 42.7551i 1.93742i 0.248200 + 0.968709i \(0.420161\pi\)
−0.248200 + 0.968709i \(0.579839\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −10.3923 −0.468998 −0.234499 0.972116i \(-0.575345\pi\)
−0.234499 + 0.972116i \(0.575345\pi\)
\(492\) 0 0
\(493\) 12.9460 0.583060
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 33.3693i − 1.49682i
\(498\) 0 0
\(499\) 38.9580i 1.74400i 0.489505 + 0.872000i \(0.337177\pi\)
−0.489505 + 0.872000i \(0.662823\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 23.7025 1.05684 0.528422 0.848982i \(-0.322784\pi\)
0.528422 + 0.848982i \(0.322784\pi\)
\(504\) 0 0
\(505\) −7.68466 −0.341963
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 10.3153i 0.457219i 0.973518 + 0.228610i \(0.0734180\pi\)
−0.973518 + 0.228610i \(0.926582\pi\)
\(510\) 0 0
\(511\) − 23.4893i − 1.03911i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0.759413 0.0334637
\(516\) 0 0
\(517\) −11.0540 −0.486153
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 24.7386i 1.08382i 0.840437 + 0.541910i \(0.182298\pi\)
−0.840437 + 0.541910i \(0.817702\pi\)
\(522\) 0 0
\(523\) − 20.9978i − 0.918171i −0.888392 0.459086i \(-0.848177\pi\)
0.888392 0.459086i \(-0.151823\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −7.47439 −0.325590
\(528\) 0 0
\(529\) −22.0540 −0.958868
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 6.00000i 0.259889i
\(534\) 0 0
\(535\) − 12.3376i − 0.533400i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.306713 0.0132111
\(540\) 0 0
\(541\) −0.684658 −0.0294358 −0.0147179 0.999892i \(-0.504685\pi\)
−0.0147179 + 0.999892i \(0.504685\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 14.0000i − 0.599694i
\(546\) 0 0
\(547\) − 34.8542i − 1.49026i −0.666919 0.745130i \(-0.732387\pi\)
0.666919 0.745130i \(-0.267613\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 4.55648 0.194112
\(552\) 0 0
\(553\) 38.0540 1.61822
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 39.3693i − 1.66813i −0.551665 0.834066i \(-0.686007\pi\)
0.551665 0.834066i \(-0.313993\pi\)
\(558\) 0 0
\(559\) 0.972638i 0.0411382i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −28.5657 −1.20390 −0.601951 0.798533i \(-0.705610\pi\)
−0.601951 + 0.798533i \(0.705610\pi\)
\(564\) 0 0
\(565\) −13.6847 −0.575718
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 12.0000i − 0.503066i −0.967849 0.251533i \(-0.919065\pi\)
0.967849 0.251533i \(-0.0809347\pi\)
\(570\) 0 0
\(571\) − 3.13114i − 0.131034i −0.997851 0.0655170i \(-0.979130\pi\)
0.997851 0.0655170i \(-0.0208697\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.972638 0.0405618
\(576\) 0 0
\(577\) 36.6847 1.52720 0.763601 0.645688i \(-0.223429\pi\)
0.763601 + 0.645688i \(0.223429\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 28.1080i − 1.16611i
\(582\) 0 0
\(583\) − 5.83583i − 0.241695i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −31.1769 −1.28681 −0.643404 0.765526i \(-0.722479\pi\)
−0.643404 + 0.765526i \(0.722479\pi\)
\(588\) 0 0
\(589\) −2.63068 −0.108395
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 13.6847i 0.561962i 0.959713 + 0.280981i \(0.0906597\pi\)
−0.959713 + 0.280981i \(0.909340\pi\)
\(594\) 0 0
\(595\) 20.7846i 0.852086i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 37.0127 1.51230 0.756150 0.654399i \(-0.227078\pi\)
0.756150 + 0.654399i \(0.227078\pi\)
\(600\) 0 0
\(601\) 2.94602 0.120171 0.0600854 0.998193i \(-0.480863\pi\)
0.0600854 + 0.998193i \(0.480863\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 10.0540i − 0.408752i
\(606\) 0 0
\(607\) − 0.759413i − 0.0308236i −0.999881 0.0154118i \(-0.995094\pi\)
0.999881 0.0154118i \(-0.00490592\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 11.3649 0.459776
\(612\) 0 0
\(613\) 20.3693 0.822709 0.411354 0.911475i \(-0.365056\pi\)
0.411354 + 0.911475i \(0.365056\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 10.3153i − 0.415280i −0.978205 0.207640i \(-0.933422\pi\)
0.978205 0.207640i \(-0.0665783\pi\)
\(618\) 0 0
\(619\) − 3.13114i − 0.125851i −0.998018 0.0629256i \(-0.979957\pi\)
0.998018 0.0629256i \(-0.0200431\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 32.4563 1.30033
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 20.6307i − 0.822599i
\(630\) 0 0
\(631\) − 16.1346i − 0.642310i −0.947027 0.321155i \(-0.895929\pi\)
0.947027 0.321155i \(-0.104071\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −10.3923 −0.412406
\(636\) 0 0
\(637\) −0.315342 −0.0124943
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 6.73863i 0.266160i 0.991105 + 0.133080i \(0.0424867\pi\)
−0.991105 + 0.133080i \(0.957513\pi\)
\(642\) 0 0
\(643\) − 17.8667i − 0.704594i −0.935888 0.352297i \(-0.885401\pi\)
0.935888 0.352297i \(-0.114599\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −18.1734 −0.714470 −0.357235 0.934014i \(-0.616281\pi\)
−0.357235 + 0.934014i \(0.616281\pi\)
\(648\) 0 0
\(649\) −1.89205 −0.0742694
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 3.36932i − 0.131852i −0.997825 0.0659258i \(-0.979000\pi\)
0.997825 0.0659258i \(-0.0210001\pi\)
\(654\) 0 0
\(655\) − 11.3649i − 0.444065i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 26.6204 1.03699 0.518493 0.855082i \(-0.326493\pi\)
0.518493 + 0.855082i \(0.326493\pi\)
\(660\) 0 0
\(661\) 37.4233 1.45560 0.727799 0.685791i \(-0.240544\pi\)
0.727799 + 0.685791i \(0.240544\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 7.31534i 0.283677i
\(666\) 0 0
\(667\) 1.63856i 0.0634454i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −6.50175 −0.250997
\(672\) 0 0
\(673\) 21.3153 0.821646 0.410823 0.911715i \(-0.365241\pi\)
0.410823 + 0.911715i \(0.365241\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 6.73863i − 0.258987i −0.991580 0.129493i \(-0.958665\pi\)
0.991580 0.129493i \(-0.0413351\pi\)
\(678\) 0 0
\(679\) 18.0799i 0.693844i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −6.50175 −0.248783 −0.124391 0.992233i \(-0.539698\pi\)
−0.124391 + 0.992233i \(0.539698\pi\)
\(684\) 0 0
\(685\) 6.00000 0.229248
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 6.00000i 0.228582i
\(690\) 0 0
\(691\) 37.0127i 1.40803i 0.710185 + 0.704016i \(0.248611\pi\)
−0.710185 + 0.704016i \(0.751389\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −9.63289 −0.365396
\(696\) 0 0
\(697\) −46.1080 −1.74646
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 17.0540i − 0.644120i −0.946719 0.322060i \(-0.895625\pi\)
0.946719 0.322060i \(-0.104375\pi\)
\(702\) 0 0
\(703\) − 7.26117i − 0.273860i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 20.7846 0.781686
\(708\) 0 0
\(709\) 21.4233 0.804569 0.402284 0.915515i \(-0.368216\pi\)
0.402284 + 0.915515i \(0.368216\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 0.946025i − 0.0354289i
\(714\) 0 0
\(715\) − 0.972638i − 0.0363746i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −18.1734 −0.677754 −0.338877 0.940831i \(-0.610047\pi\)
−0.338877 + 0.940831i \(0.610047\pi\)
\(720\) 0 0
\(721\) −2.05398 −0.0764940
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.68466i 0.0625666i
\(726\) 0 0
\(727\) − 38.9580i − 1.44487i −0.691437 0.722436i \(-0.743022\pi\)
0.691437 0.722436i \(-0.256978\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −7.47439 −0.276450
\(732\) 0 0
\(733\) −2.00000 −0.0738717 −0.0369358 0.999318i \(-0.511760\pi\)
−0.0369358 + 0.999318i \(0.511760\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 11.2614i 0.414818i
\(738\) 0 0
\(739\) − 4.55648i − 0.167613i −0.996482 0.0838064i \(-0.973292\pi\)
0.996482 0.0838064i \(-0.0267077\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 36.0401 1.32218 0.661092 0.750305i \(-0.270093\pi\)
0.661092 + 0.750305i \(0.270093\pi\)
\(744\) 0 0
\(745\) −23.0540 −0.844632
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 33.3693i 1.21929i
\(750\) 0 0
\(751\) − 33.3354i − 1.21643i −0.793774 0.608213i \(-0.791887\pi\)
0.793774 0.608213i \(-0.208113\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 10.6055 0.385975
\(756\) 0 0
\(757\) −5.73863 −0.208574 −0.104287 0.994547i \(-0.533256\pi\)
−0.104287 + 0.994547i \(0.533256\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0.738634i 0.0267755i 0.999910 + 0.0133877i \(0.00426157\pi\)
−0.999910 + 0.0133877i \(0.995738\pi\)
\(762\) 0 0
\(763\) 37.8656i 1.37083i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.94528 0.0702398
\(768\) 0 0
\(769\) −35.1080 −1.26603 −0.633013 0.774142i \(-0.718182\pi\)
−0.633013 + 0.774142i \(0.718182\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 40.1080i − 1.44258i −0.692632 0.721291i \(-0.743549\pi\)
0.692632 0.721291i \(-0.256451\pi\)
\(774\) 0 0
\(775\) − 0.972638i − 0.0349382i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −16.2281 −0.581433
\(780\) 0 0
\(781\) −12.0000 −0.429394
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 13.0540i 0.465916i
\(786\) 0 0
\(787\) − 41.7824i − 1.48938i −0.667409 0.744692i \(-0.732597\pi\)
0.667409 0.744692i \(-0.267403\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 37.0127 1.31602
\(792\) 0 0
\(793\) 6.68466 0.237379
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 18.7386i 0.663756i 0.943322 + 0.331878i \(0.107682\pi\)
−0.943322 + 0.331878i \(0.892318\pi\)
\(798\) 0 0
\(799\) 87.3357i 3.08972i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −8.44703 −0.298089
\(804\) 0 0
\(805\) −2.63068 −0.0927194
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 20.6307i 0.725336i 0.931918 + 0.362668i \(0.118134\pi\)
−0.931918 + 0.362668i \(0.881866\pi\)
\(810\) 0 0
\(811\) 44.7938i 1.57292i 0.617638 + 0.786462i \(0.288090\pi\)
−0.617638 + 0.786462i \(0.711910\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 12.1244 0.424698
\(816\) 0 0
\(817\) −2.63068 −0.0920360
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 51.3693i 1.79280i 0.443244 + 0.896401i \(0.353827\pi\)
−0.443244 + 0.896401i \(0.646173\pi\)
\(822\) 0 0
\(823\) 15.0423i 0.524341i 0.965022 + 0.262170i \(0.0844382\pi\)
−0.965022 + 0.262170i \(0.915562\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −3.89055 −0.135288 −0.0676439 0.997710i \(-0.521548\pi\)
−0.0676439 + 0.997710i \(0.521548\pi\)
\(828\) 0 0
\(829\) −43.4233 −1.50815 −0.754077 0.656786i \(-0.771915\pi\)
−0.754077 + 0.656786i \(0.771915\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 2.42329i − 0.0839621i
\(834\) 0 0
\(835\) − 1.94528i − 0.0673191i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −7.78110 −0.268634 −0.134317 0.990938i \(-0.542884\pi\)
−0.134317 + 0.990938i \(0.542884\pi\)
\(840\) 0 0
\(841\) 26.1619 0.902135
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 12.0000i − 0.412813i
\(846\) 0 0
\(847\) 27.1929i 0.934358i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.61120 0.0895108
\(852\) 0 0
\(853\) 39.1080 1.33903 0.669515 0.742798i \(-0.266502\pi\)
0.669515 + 0.742798i \(0.266502\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 36.7386i 1.25497i 0.778630 + 0.627484i \(0.215915\pi\)
−0.778630 + 0.627484i \(0.784085\pi\)
\(858\) 0 0
\(859\) 15.4687i 0.527786i 0.964552 + 0.263893i \(0.0850066\pi\)
−0.964552 + 0.263893i \(0.914993\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −39.9307 −1.35926 −0.679628 0.733557i \(-0.737859\pi\)
−0.679628 + 0.733557i \(0.737859\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 13.6847i − 0.464220i
\(870\) 0 0
\(871\) − 11.5782i − 0.392311i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2.70469 −0.0914352
\(876\) 0 0
\(877\) −10.3693 −0.350147 −0.175073 0.984555i \(-0.556016\pi\)
−0.175073 + 0.984555i \(0.556016\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 24.7386i − 0.833466i −0.909029 0.416733i \(-0.863175\pi\)
0.909029 0.416733i \(-0.136825\pi\)
\(882\) 0 0
\(883\) − 50.1097i − 1.68633i −0.537657 0.843163i \(-0.680691\pi\)
0.537657 0.843163i \(-0.319309\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 41.8759 1.40606 0.703028 0.711162i \(-0.251831\pi\)
0.703028 + 0.711162i \(0.251831\pi\)
\(888\) 0 0
\(889\) 28.1080 0.942710
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 30.7386i 1.02863i
\(894\) 0 0
\(895\) − 14.2829i − 0.477423i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.63856 0.0546491
\(900\) 0 0
\(901\) −46.1080 −1.53608
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 18.0540i 0.600134i
\(906\) 0 0
\(907\) − 43.7277i − 1.45196i −0.687718 0.725978i \(-0.741388\pi\)
0.687718 0.725978i \(-0.258612\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −43.5145 −1.44170 −0.720850 0.693091i \(-0.756248\pi\)
−0.720850 + 0.693091i \(0.756248\pi\)
\(912\) 0 0
\(913\) −10.1080 −0.334524
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 30.7386i 1.01508i
\(918\) 0 0
\(919\) − 48.3777i − 1.59583i −0.602768 0.797916i \(-0.705936\pi\)
0.602768 0.797916i \(-0.294064\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 12.3376 0.406096
\(924\) 0 0
\(925\) 2.68466 0.0882710
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 24.7386i − 0.811648i −0.913951 0.405824i \(-0.866985\pi\)
0.913951 0.405824i \(-0.133015\pi\)
\(930\) 0 0
\(931\) − 0.852901i − 0.0279527i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 7.47439 0.244439
\(936\) 0 0
\(937\) 36.6847 1.19844 0.599218 0.800586i \(-0.295478\pi\)
0.599218 + 0.800586i \(0.295478\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 56.4233i 1.83935i 0.392684 + 0.919673i \(0.371547\pi\)
−0.392684 + 0.919673i \(0.628453\pi\)
\(942\) 0 0
\(943\) − 5.83583i − 0.190041i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 47.4050 1.54046 0.770229 0.637768i \(-0.220142\pi\)
0.770229 + 0.637768i \(0.220142\pi\)
\(948\) 0 0
\(949\) 8.68466 0.281916
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 43.6847i 1.41508i 0.706671 + 0.707542i \(0.250196\pi\)
−0.706671 + 0.707542i \(0.749804\pi\)
\(954\) 0 0
\(955\) 20.7846i 0.672574i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −16.2281 −0.524034
\(960\) 0 0
\(961\) 30.0540 0.969483
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 24.6847i 0.794627i
\(966\) 0 0
\(967\) 11.1517i 0.358615i 0.983793 + 0.179308i \(0.0573857\pi\)
−0.983793 + 0.179308i \(0.942614\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 15.2555 0.489572 0.244786 0.969577i \(-0.421282\pi\)
0.244786 + 0.969577i \(0.421282\pi\)
\(972\) 0 0
\(973\) 26.0540 0.835252
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 1.68466i − 0.0538970i −0.999637 0.0269485i \(-0.991421\pi\)
0.999637 0.0269485i \(-0.00857901\pi\)
\(978\) 0 0
\(979\) − 11.6717i − 0.373028i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −25.6478 −0.818038 −0.409019 0.912526i \(-0.634129\pi\)
−0.409019 + 0.912526i \(0.634129\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 0.946025i − 0.0300818i
\(990\) 0 0
\(991\) 6.04905i 0.192155i 0.995374 + 0.0960773i \(0.0306296\pi\)
−0.995374 + 0.0960773i \(0.969370\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1.73205 0.0549097
\(996\) 0 0
\(997\) −45.0540 −1.42687 −0.713437 0.700720i \(-0.752862\pi\)
−0.713437 + 0.700720i \(0.752862\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2160.2.h.g.431.6 yes 8
3.2 odd 2 inner 2160.2.h.g.431.2 8
4.3 odd 2 inner 2160.2.h.g.431.7 yes 8
12.11 even 2 inner 2160.2.h.g.431.3 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2160.2.h.g.431.2 8 3.2 odd 2 inner
2160.2.h.g.431.3 yes 8 12.11 even 2 inner
2160.2.h.g.431.6 yes 8 1.1 even 1 trivial
2160.2.h.g.431.7 yes 8 4.3 odd 2 inner