L(s) = 1 | + (0.809 − 0.587i)2-s + (0.309 − 0.951i)4-s + (−0.309 − 0.951i)8-s + (0.309 − 0.951i)9-s + (0.309 + 0.951i)11-s + (−0.809 − 0.587i)16-s + (−0.309 − 0.951i)18-s + (0.809 + 0.587i)22-s − 1.17i·23-s + (0.809 − 0.587i)25-s + (0.5 + 0.363i)29-s − 32-s + (−0.809 − 0.587i)36-s + (−1.30 − 0.951i)37-s + 1.90i·43-s + 44-s + ⋯ |
L(s) = 1 | + (0.809 − 0.587i)2-s + (0.309 − 0.951i)4-s + (−0.309 − 0.951i)8-s + (0.309 − 0.951i)9-s + (0.309 + 0.951i)11-s + (−0.809 − 0.587i)16-s + (−0.309 − 0.951i)18-s + (0.809 + 0.587i)22-s − 1.17i·23-s + (0.809 − 0.587i)25-s + (0.5 + 0.363i)29-s − 32-s + (−0.809 − 0.587i)36-s + (−1.30 − 0.951i)37-s + 1.90i·43-s + 44-s + ⋯ |
Λ(s)=(=(2156s/2ΓC(s)L(s)(0.0457+0.998i)Λ(1−s)
Λ(s)=(=(2156s/2ΓC(s)L(s)(0.0457+0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
2156
= 22⋅72⋅11
|
Sign: |
0.0457+0.998i
|
Analytic conductor: |
1.07598 |
Root analytic conductor: |
1.03729 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2156(295,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2156, ( :0), 0.0457+0.998i)
|
Particular Values
L(21) |
≈ |
1.882926496 |
L(21) |
≈ |
1.882926496 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.809+0.587i)T |
| 7 | 1 |
| 11 | 1+(−0.309−0.951i)T |
good | 3 | 1+(−0.309+0.951i)T2 |
| 5 | 1+(−0.809+0.587i)T2 |
| 13 | 1+(−0.809−0.587i)T2 |
| 17 | 1+(−0.809+0.587i)T2 |
| 19 | 1+(−0.309+0.951i)T2 |
| 23 | 1+1.17iT−T2 |
| 29 | 1+(−0.5−0.363i)T+(0.309+0.951i)T2 |
| 31 | 1+(0.809+0.587i)T2 |
| 37 | 1+(1.30+0.951i)T+(0.309+0.951i)T2 |
| 41 | 1+(0.309−0.951i)T2 |
| 43 | 1−1.90iT−T2 |
| 47 | 1+(−0.309+0.951i)T2 |
| 53 | 1+(−0.190+0.587i)T+(−0.809−0.587i)T2 |
| 59 | 1+(−0.309−0.951i)T2 |
| 61 | 1+(−0.809+0.587i)T2 |
| 67 | 1−1.90iT−T2 |
| 71 | 1+(1.80−0.587i)T+(0.809−0.587i)T2 |
| 73 | 1+(0.309+0.951i)T2 |
| 79 | 1+(−1.80−0.587i)T+(0.809+0.587i)T2 |
| 83 | 1+(0.809−0.587i)T2 |
| 89 | 1+T2 |
| 97 | 1+(−0.809−0.587i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.260619221646573952632310258993, −8.495189521230951502256498580448, −7.12300891015867356796205536148, −6.70132575449170887587267911925, −5.88619258511561184115702576009, −4.78564509680483174264859772263, −4.25746221996550414727774721627, −3.29622688538725096910354894141, −2.32198143447043050283840273335, −1.12812718897461128216231276572,
1.77272992327997460524891031736, 3.02559129580826860242237050292, 3.75375999522768963027245614725, 4.83291672661931920139357735444, 5.39930400202314447065443570226, 6.25604237199220609150750650274, 7.09382114724069700988116585290, 7.74241093801919321006829826139, 8.526718897051506495801929374660, 9.170270498135628545332788761732