L(s) = 1 | + (0.809 + 0.587i)2-s + (0.309 + 0.951i)4-s + (−0.309 + 0.951i)8-s + (0.309 + 0.951i)9-s + (0.309 − 0.951i)11-s + (−0.809 + 0.587i)16-s + (−0.309 + 0.951i)18-s + (0.809 − 0.587i)22-s + 1.17i·23-s + (0.809 + 0.587i)25-s + (0.5 − 0.363i)29-s − 32-s + (−0.809 + 0.587i)36-s + (−1.30 + 0.951i)37-s − 1.90i·43-s + 44-s + ⋯ |
L(s) = 1 | + (0.809 + 0.587i)2-s + (0.309 + 0.951i)4-s + (−0.309 + 0.951i)8-s + (0.309 + 0.951i)9-s + (0.309 − 0.951i)11-s + (−0.809 + 0.587i)16-s + (−0.309 + 0.951i)18-s + (0.809 − 0.587i)22-s + 1.17i·23-s + (0.809 + 0.587i)25-s + (0.5 − 0.363i)29-s − 32-s + (−0.809 + 0.587i)36-s + (−1.30 + 0.951i)37-s − 1.90i·43-s + 44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0457 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0457 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.882926496\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.882926496\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.809 - 0.587i)T \) |
| 7 | \( 1 \) |
| 11 | \( 1 + (-0.309 + 0.951i)T \) |
good | 3 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 5 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 13 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 17 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 19 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 - 1.17iT - T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.363i)T + (0.309 - 0.951i)T^{2} \) |
| 31 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (1.30 - 0.951i)T + (0.309 - 0.951i)T^{2} \) |
| 41 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 + 1.90iT - T^{2} \) |
| 47 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 53 | \( 1 + (-0.190 - 0.587i)T + (-0.809 + 0.587i)T^{2} \) |
| 59 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 61 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 67 | \( 1 + 1.90iT - T^{2} \) |
| 71 | \( 1 + (1.80 + 0.587i)T + (0.809 + 0.587i)T^{2} \) |
| 73 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 79 | \( 1 + (-1.80 + 0.587i)T + (0.809 - 0.587i)T^{2} \) |
| 83 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.170270498135628545332788761732, −8.526718897051506495801929374660, −7.74241093801919321006829826139, −7.09382114724069700988116585290, −6.25604237199220609150750650274, −5.39930400202314447065443570226, −4.83291672661931920139357735444, −3.75375999522768963027245614725, −3.02559129580826860242237050292, −1.77272992327997460524891031736,
1.12812718897461128216231276572, 2.32198143447043050283840273335, 3.29622688538725096910354894141, 4.25746221996550414727774721627, 4.78564509680483174264859772263, 5.88619258511561184115702576009, 6.70132575449170887587267911925, 7.12300891015867356796205536148, 8.495189521230951502256498580448, 9.260619221646573952632310258993