Properties

Label 2-2156-44.15-c0-0-0
Degree 22
Conductor 21562156
Sign 0.8220.568i-0.822 - 0.568i
Analytic cond. 1.075981.07598
Root an. cond. 1.037291.03729
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.309 + 0.951i)2-s + (−0.809 − 0.587i)4-s + (0.809 − 0.587i)8-s + (−0.809 − 0.587i)9-s + (−0.809 + 0.587i)11-s + (0.309 + 0.951i)16-s + (0.809 − 0.587i)18-s + (−0.309 − 0.951i)22-s + 1.90i·23-s + (−0.309 + 0.951i)25-s + (0.5 + 1.53i)29-s − 32-s + (0.309 + 0.951i)36-s + (−0.190 − 0.587i)37-s + 1.17i·43-s + 0.999·44-s + ⋯
L(s)  = 1  + (−0.309 + 0.951i)2-s + (−0.809 − 0.587i)4-s + (0.809 − 0.587i)8-s + (−0.809 − 0.587i)9-s + (−0.809 + 0.587i)11-s + (0.309 + 0.951i)16-s + (0.809 − 0.587i)18-s + (−0.309 − 0.951i)22-s + 1.90i·23-s + (−0.309 + 0.951i)25-s + (0.5 + 1.53i)29-s − 32-s + (0.309 + 0.951i)36-s + (−0.190 − 0.587i)37-s + 1.17i·43-s + 0.999·44-s + ⋯

Functional equation

Λ(s)=(2156s/2ΓC(s)L(s)=((0.8220.568i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.822 - 0.568i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(2156s/2ΓC(s)L(s)=((0.8220.568i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.822 - 0.568i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 21562156    =    2272112^{2} \cdot 7^{2} \cdot 11
Sign: 0.8220.568i-0.822 - 0.568i
Analytic conductor: 1.075981.07598
Root analytic conductor: 1.037291.03729
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ2156(1863,)\chi_{2156} (1863, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 2156, ( :0), 0.8220.568i)(2,\ 2156,\ (\ :0),\ -0.822 - 0.568i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.59783049810.5978304981
L(12)L(\frac12) \approx 0.59783049810.5978304981
L(1)L(1) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.3090.951i)T 1 + (0.309 - 0.951i)T
7 1 1
11 1+(0.8090.587i)T 1 + (0.809 - 0.587i)T
good3 1+(0.809+0.587i)T2 1 + (0.809 + 0.587i)T^{2}
5 1+(0.3090.951i)T2 1 + (0.309 - 0.951i)T^{2}
13 1+(0.309+0.951i)T2 1 + (0.309 + 0.951i)T^{2}
17 1+(0.3090.951i)T2 1 + (0.309 - 0.951i)T^{2}
19 1+(0.809+0.587i)T2 1 + (0.809 + 0.587i)T^{2}
23 11.90iTT2 1 - 1.90iT - T^{2}
29 1+(0.51.53i)T+(0.809+0.587i)T2 1 + (-0.5 - 1.53i)T + (-0.809 + 0.587i)T^{2}
31 1+(0.3090.951i)T2 1 + (-0.309 - 0.951i)T^{2}
37 1+(0.190+0.587i)T+(0.809+0.587i)T2 1 + (0.190 + 0.587i)T + (-0.809 + 0.587i)T^{2}
41 1+(0.8090.587i)T2 1 + (-0.809 - 0.587i)T^{2}
43 11.17iTT2 1 - 1.17iT - T^{2}
47 1+(0.809+0.587i)T2 1 + (0.809 + 0.587i)T^{2}
53 1+(1.300.951i)T+(0.309+0.951i)T2 1 + (-1.30 - 0.951i)T + (0.309 + 0.951i)T^{2}
59 1+(0.8090.587i)T2 1 + (0.809 - 0.587i)T^{2}
61 1+(0.3090.951i)T2 1 + (0.309 - 0.951i)T^{2}
67 11.17iTT2 1 - 1.17iT - T^{2}
71 1+(0.690+0.951i)T+(0.309+0.951i)T2 1 + (0.690 + 0.951i)T + (-0.309 + 0.951i)T^{2}
73 1+(0.809+0.587i)T2 1 + (-0.809 + 0.587i)T^{2}
79 1+(0.690+0.951i)T+(0.3090.951i)T2 1 + (-0.690 + 0.951i)T + (-0.309 - 0.951i)T^{2}
83 1+(0.309+0.951i)T2 1 + (-0.309 + 0.951i)T^{2}
89 1+T2 1 + T^{2}
97 1+(0.309+0.951i)T2 1 + (0.309 + 0.951i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.277803151725284698560150750564, −8.889559194824773682558100429175, −7.84202131972720242155577538013, −7.37984184573931236026362532338, −6.52730173290851273359128547822, −5.55000621923335633472208920160, −5.20392382048623533902776014333, −3.99432370900219462247714018816, −3.00846288659231015062940276482, −1.44882292241068811408419734826, 0.47548975821345062308886031626, 2.29961280087197328923065562649, 2.71655429696924485186212542077, 3.92023985262677330884460178430, 4.80219421442290289189964615938, 5.60628586288114440575739415966, 6.59790669053554305356205092444, 7.86346958204365734180921590450, 8.317397984434804676167563591192, 8.826687232056809798004631289991

Graph of the ZZ-function along the critical line