L(s) = 1 | + (−0.309 − 0.951i)2-s + (−0.809 + 0.587i)4-s + (0.809 + 0.587i)8-s + (−0.809 + 0.587i)9-s + (−0.809 − 0.587i)11-s + (0.309 − 0.951i)16-s + (0.809 + 0.587i)18-s + (−0.309 + 0.951i)22-s − 1.90i·23-s + (−0.309 − 0.951i)25-s + (0.5 − 1.53i)29-s − 32-s + (0.309 − 0.951i)36-s + (−0.190 + 0.587i)37-s − 1.17i·43-s + 0.999·44-s + ⋯ |
L(s) = 1 | + (−0.309 − 0.951i)2-s + (−0.809 + 0.587i)4-s + (0.809 + 0.587i)8-s + (−0.809 + 0.587i)9-s + (−0.809 − 0.587i)11-s + (0.309 − 0.951i)16-s + (0.809 + 0.587i)18-s + (−0.309 + 0.951i)22-s − 1.90i·23-s + (−0.309 − 0.951i)25-s + (0.5 − 1.53i)29-s − 32-s + (0.309 − 0.951i)36-s + (−0.190 + 0.587i)37-s − 1.17i·43-s + 0.999·44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.822 + 0.568i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.822 + 0.568i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5978304981\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5978304981\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.309 + 0.951i)T \) |
| 7 | \( 1 \) |
| 11 | \( 1 + (0.809 + 0.587i)T \) |
good | 3 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 5 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 13 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 17 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 23 | \( 1 + 1.90iT - T^{2} \) |
| 29 | \( 1 + (-0.5 + 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 31 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (0.190 - 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 41 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 + 1.17iT - T^{2} \) |
| 47 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 53 | \( 1 + (-1.30 + 0.951i)T + (0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 67 | \( 1 + 1.17iT - T^{2} \) |
| 71 | \( 1 + (0.690 - 0.951i)T + (-0.309 - 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 79 | \( 1 + (-0.690 - 0.951i)T + (-0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (0.309 - 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.826687232056809798004631289991, −8.317397984434804676167563591192, −7.86346958204365734180921590450, −6.59790669053554305356205092444, −5.60628586288114440575739415966, −4.80219421442290289189964615938, −3.92023985262677330884460178430, −2.71655429696924485186212542077, −2.29961280087197328923065562649, −0.47548975821345062308886031626,
1.44882292241068811408419734826, 3.00846288659231015062940276482, 3.99432370900219462247714018816, 5.20392382048623533902776014333, 5.55000621923335633472208920160, 6.52730173290851273359128547822, 7.37984184573931236026362532338, 7.84202131972720242155577538013, 8.889559194824773682558100429175, 9.277803151725284698560150750564