L(s) = 1 | + (1.30 − 0.951i)2-s + (0.809 − 0.587i)3-s + (0.190 − 0.587i)4-s + (−0.881 − 2.71i)5-s + (0.5 − 1.53i)6-s + (1.30 − 0.951i)7-s + (0.690 + 2.12i)8-s + (0.309 − 0.951i)9-s + (−3.73 − 2.71i)10-s + (−4.92 + 3.57i)11-s + (−0.190 − 0.587i)12-s + (1.80 + 1.31i)13-s + (0.809 − 2.48i)14-s + (−2.30 − 1.67i)15-s + (3.92 + 2.85i)16-s + ⋯ |
L(s) = 1 | + (0.925 − 0.672i)2-s + (0.467 − 0.339i)3-s + (0.0954 − 0.293i)4-s + (−0.394 − 1.21i)5-s + (0.204 − 0.628i)6-s + (0.494 − 0.359i)7-s + (0.244 + 0.751i)8-s + (0.103 − 0.317i)9-s + (−1.18 − 0.858i)10-s + (−1.48 + 1.07i)11-s + (−0.0551 − 0.169i)12-s + (0.501 + 0.364i)13-s + (0.216 − 0.665i)14-s + (−0.596 − 0.433i)15-s + (0.981 + 0.713i)16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 213 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.230 + 0.973i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 213 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.230 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.58548 - 1.25357i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.58548 - 1.25357i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.809 + 0.587i)T \) |
| 71 | \( 1 + (1.95 + 8.19i)T \) |
good | 2 | \( 1 + (-1.30 + 0.951i)T + (0.618 - 1.90i)T^{2} \) |
| 5 | \( 1 + (0.881 + 2.71i)T + (-4.04 + 2.93i)T^{2} \) |
| 7 | \( 1 + (-1.30 + 0.951i)T + (2.16 - 6.65i)T^{2} \) |
| 11 | \( 1 + (4.92 - 3.57i)T + (3.39 - 10.4i)T^{2} \) |
| 13 | \( 1 + (-1.80 - 1.31i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-5.73 + 4.16i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 + 3.47T + 23T^{2} \) |
| 29 | \( 1 + (-2.88 - 8.86i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (6.04 - 4.39i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + 2.38T + 37T^{2} \) |
| 41 | \( 1 - 3.09T + 41T^{2} \) |
| 43 | \( 1 + (0.118 + 0.363i)T + (-34.7 + 25.2i)T^{2} \) |
| 47 | \( 1 + (5.42 + 3.94i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (3.89 + 12.0i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (-1.80 - 5.56i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (5.16 + 3.75i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + (0.472 - 1.45i)T + (-54.2 - 39.3i)T^{2} \) |
| 73 | \( 1 + (-8.35 + 6.06i)T + (22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (0.600 + 1.84i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (3.69 + 11.3i)T + (-67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 + (0.972 + 2.99i)T + (-72.0 + 52.3i)T^{2} \) |
| 97 | \( 1 + 5.94T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.45374681817448949435612613513, −11.52218705123654231889505442844, −10.46347974850906625940332532109, −9.052268929186346132556214708203, −8.112208082405362211383533337807, −7.31032489314366304360339425940, −5.14734145331997360538862683545, −4.69687698929824595521888919286, −3.29982979165322263147623790740, −1.74113079865308311380341710844,
2.88436744098542462967461381731, 3.85489758778458500192809170725, 5.37040867994625547979770983517, 6.08664674409370473602490251731, 7.59972062186585577381821141652, 8.081405341052435696004478041412, 9.806553925271356087090150026629, 10.65654900807613681066609058666, 11.52774413193642755060859208621, 12.92013808765077464232746181186