Properties

Label 2-21168-1.1-c1-0-12
Degree $2$
Conductor $21168$
Sign $1$
Analytic cond. $169.027$
Root an. cond. $13.0010$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·13-s − 19-s − 5·25-s − 7·31-s − 10·37-s − 5·43-s + 61-s + 16·67-s − 17·73-s + 4·79-s + 19·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 0.554·13-s − 0.229·19-s − 25-s − 1.25·31-s − 1.64·37-s − 0.762·43-s + 0.128·61-s + 1.95·67-s − 1.98·73-s + 0.450·79-s + 1.92·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(21168\)    =    \(2^{4} \cdot 3^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(169.027\)
Root analytic conductor: \(13.0010\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 21168,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.319362002\)
\(L(\frac12)\) \(\approx\) \(1.319362002\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 - 16 T + p T^{2} \) 1.67.aq
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 17 T + p T^{2} \) 1.73.r
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 19 T + p T^{2} \) 1.97.at
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.66553243407727, −15.02970761703465, −14.47598075990227, −14.03648246143621, −13.41420768875524, −12.80586622757553, −12.40728460666403, −11.61934753489427, −11.39383557435307, −10.44691308920947, −10.17944538623827, −9.464055371270285, −8.888868885569261, −8.346699243517210, −7.595105091662441, −7.165699048080696, −6.491793974181406, −5.772426568368413, −5.202557527461710, −4.570429797897447, −3.736474285874611, −3.246184778600049, −2.195873901897803, −1.717436249156064, −0.4519342743888883, 0.4519342743888883, 1.717436249156064, 2.195873901897803, 3.246184778600049, 3.736474285874611, 4.570429797897447, 5.202557527461710, 5.772426568368413, 6.491793974181406, 7.165699048080696, 7.595105091662441, 8.346699243517210, 8.888868885569261, 9.464055371270285, 10.17944538623827, 10.44691308920947, 11.39383557435307, 11.61934753489427, 12.40728460666403, 12.80586622757553, 13.41420768875524, 14.03648246143621, 14.47598075990227, 15.02970761703465, 15.66553243407727

Graph of the $Z$-function along the critical line