L(s) = 1 | − 3i·3-s − 7i·7-s − 9·9-s + 4·11-s − 54i·13-s − 14i·17-s − 92·19-s − 21·21-s + 152i·23-s + 27i·27-s + 106·29-s − 144·31-s − 12i·33-s + 158i·37-s − 162·39-s + ⋯ |
L(s) = 1 | − 0.577i·3-s − 0.377i·7-s − 0.333·9-s + 0.109·11-s − 1.15i·13-s − 0.199i·17-s − 1.11·19-s − 0.218·21-s + 1.37i·23-s + 0.192i·27-s + 0.678·29-s − 0.834·31-s − 0.0633i·33-s + 0.702i·37-s − 0.665·39-s + ⋯ |
Λ(s)=(=(2100s/2ΓC(s)L(s)(0.447−0.894i)Λ(4−s)
Λ(s)=(=(2100s/2ΓC(s+3/2)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
2100
= 22⋅3⋅52⋅7
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
123.904 |
Root analytic conductor: |
11.1312 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2100(1849,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2100, ( :3/2), 0.447−0.894i)
|
Particular Values
L(2) |
≈ |
0.8980327255 |
L(21) |
≈ |
0.8980327255 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+3iT |
| 5 | 1 |
| 7 | 1+7iT |
good | 11 | 1−4T+1.33e3T2 |
| 13 | 1+54iT−2.19e3T2 |
| 17 | 1+14iT−4.91e3T2 |
| 19 | 1+92T+6.85e3T2 |
| 23 | 1−152iT−1.21e4T2 |
| 29 | 1−106T+2.43e4T2 |
| 31 | 1+144T+2.97e4T2 |
| 37 | 1−158iT−5.06e4T2 |
| 41 | 1+390T+6.89e4T2 |
| 43 | 1−508iT−7.95e4T2 |
| 47 | 1+528iT−1.03e5T2 |
| 53 | 1+606iT−1.48e5T2 |
| 59 | 1−364T+2.05e5T2 |
| 61 | 1−678T+2.26e5T2 |
| 67 | 1−844iT−3.00e5T2 |
| 71 | 1+8T+3.57e5T2 |
| 73 | 1−422iT−3.89e5T2 |
| 79 | 1+384T+4.93e5T2 |
| 83 | 1−548iT−5.71e5T2 |
| 89 | 1+1.19e3T+7.04e5T2 |
| 97 | 1+1.50e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.542222737489697285052910572286, −8.245525450570863198102638050201, −7.23360785145816925042800614774, −6.70870919036987273729668193862, −5.71584198271652716078803442801, −5.03452139139164025086740393084, −3.85464774016382354694199052601, −3.03862808860091806089384428942, −1.91986023388424447428465672186, −0.893914474519227313754950317785,
0.20740427915651909944462589503, 1.78937730751274217184649329827, 2.64518240234891050233234077620, 3.86524136341126907758285643072, 4.45315358010991380576863299478, 5.34907356905472767499163831716, 6.32606465557654087179360601218, 6.86202624460057260219195230945, 8.014987727968908900509961073315, 8.873710292611585553740468772235