Properties

Label 2-21-7.4-c5-0-1
Degree 22
Conductor 2121
Sign 0.7010.712i-0.701 - 0.712i
Analytic cond. 3.368063.36806
Root an. cond. 1.835221.83522
Motivic weight 55
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (4.59 + 7.95i)2-s + (−4.5 + 7.79i)3-s + (−26.1 + 45.2i)4-s + (−11.0 − 19.1i)5-s − 82.6·6-s + (126. + 26.6i)7-s − 186.·8-s + (−40.5 − 70.1i)9-s + (101. − 175. i)10-s + (−208. + 360. i)11-s + (−235. − 407. i)12-s + 797.·13-s + (370. + 1.13e3i)14-s + 198.·15-s + (−18.6 − 32.3i)16-s + (687. − 1.19e3i)17-s + ⋯
L(s)  = 1  + (0.811 + 1.40i)2-s + (−0.288 + 0.499i)3-s + (−0.817 + 1.41i)4-s + (−0.197 − 0.341i)5-s − 0.937·6-s + (0.978 + 0.205i)7-s − 1.02·8-s + (−0.166 − 0.288i)9-s + (0.320 − 0.554i)10-s + (−0.519 + 0.899i)11-s + (−0.471 − 0.817i)12-s + 1.30·13-s + (0.505 + 1.54i)14-s + 0.227·15-s + (−0.0182 − 0.0315i)16-s + (0.577 − 0.999i)17-s + ⋯

Functional equation

Λ(s)=(21s/2ΓC(s)L(s)=((0.7010.712i)Λ(6s)\begin{aligned}\Lambda(s)=\mathstrut & 21 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.701 - 0.712i)\, \overline{\Lambda}(6-s) \end{aligned}
Λ(s)=(21s/2ΓC(s+5/2)L(s)=((0.7010.712i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 21 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.701 - 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 2121    =    373 \cdot 7
Sign: 0.7010.712i-0.701 - 0.712i
Analytic conductor: 3.368063.36806
Root analytic conductor: 1.835221.83522
Motivic weight: 55
Rational: no
Arithmetic: yes
Character: χ21(4,)\chi_{21} (4, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 21, ( :5/2), 0.7010.712i)(2,\ 21,\ (\ :5/2),\ -0.701 - 0.712i)

Particular Values

L(3)L(3) \approx 0.739914+1.76562i0.739914 + 1.76562i
L(12)L(\frac12) \approx 0.739914+1.76562i0.739914 + 1.76562i
L(72)L(\frac{7}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1+(4.57.79i)T 1 + (4.5 - 7.79i)T
7 1+(126.26.6i)T 1 + (-126. - 26.6i)T
good2 1+(4.597.95i)T+(16+27.7i)T2 1 + (-4.59 - 7.95i)T + (-16 + 27.7i)T^{2}
5 1+(11.0+19.1i)T+(1.56e3+2.70e3i)T2 1 + (11.0 + 19.1i)T + (-1.56e3 + 2.70e3i)T^{2}
11 1+(208.360.i)T+(8.05e41.39e5i)T2 1 + (208. - 360. i)T + (-8.05e4 - 1.39e5i)T^{2}
13 1797.T+3.71e5T2 1 - 797.T + 3.71e5T^{2}
17 1+(687.+1.19e3i)T+(7.09e51.22e6i)T2 1 + (-687. + 1.19e3i)T + (-7.09e5 - 1.22e6i)T^{2}
19 1+(1.15e3+2.00e3i)T+(1.23e6+2.14e6i)T2 1 + (1.15e3 + 2.00e3i)T + (-1.23e6 + 2.14e6i)T^{2}
23 1+(477.827.i)T+(3.21e6+5.57e6i)T2 1 + (-477. - 827. i)T + (-3.21e6 + 5.57e6i)T^{2}
29 1+7.03e3T+2.05e7T2 1 + 7.03e3T + 2.05e7T^{2}
31 1+(630.1.09e3i)T+(1.43e72.47e7i)T2 1 + (630. - 1.09e3i)T + (-1.43e7 - 2.47e7i)T^{2}
37 1+(4.88e3+8.46e3i)T+(3.46e7+6.00e7i)T2 1 + (4.88e3 + 8.46e3i)T + (-3.46e7 + 6.00e7i)T^{2}
41 1+5.40e3T+1.15e8T2 1 + 5.40e3T + 1.15e8T^{2}
43 11.96e4T+1.47e8T2 1 - 1.96e4T + 1.47e8T^{2}
47 1+(1.02e3+1.78e3i)T+(1.14e8+1.98e8i)T2 1 + (1.02e3 + 1.78e3i)T + (-1.14e8 + 1.98e8i)T^{2}
53 1+(9.01e31.56e4i)T+(2.09e83.62e8i)T2 1 + (9.01e3 - 1.56e4i)T + (-2.09e8 - 3.62e8i)T^{2}
59 1+(3.71e36.43e3i)T+(3.57e86.19e8i)T2 1 + (3.71e3 - 6.43e3i)T + (-3.57e8 - 6.19e8i)T^{2}
61 1+(1.74e3+3.02e3i)T+(4.22e8+7.31e8i)T2 1 + (1.74e3 + 3.02e3i)T + (-4.22e8 + 7.31e8i)T^{2}
67 1+(7.92e31.37e4i)T+(6.75e81.16e9i)T2 1 + (7.92e3 - 1.37e4i)T + (-6.75e8 - 1.16e9i)T^{2}
71 15.81e4T+1.80e9T2 1 - 5.81e4T + 1.80e9T^{2}
73 1+(1.95e43.38e4i)T+(1.03e91.79e9i)T2 1 + (1.95e4 - 3.38e4i)T + (-1.03e9 - 1.79e9i)T^{2}
79 1+(4.88e3+8.45e3i)T+(1.53e9+2.66e9i)T2 1 + (4.88e3 + 8.45e3i)T + (-1.53e9 + 2.66e9i)T^{2}
83 1+7.03e4T+3.93e9T2 1 + 7.03e4T + 3.93e9T^{2}
89 1+(7.21e4+1.24e5i)T+(2.79e9+4.83e9i)T2 1 + (7.21e4 + 1.24e5i)T + (-2.79e9 + 4.83e9i)T^{2}
97 1+7.93e4T+8.58e9T2 1 + 7.93e4T + 8.58e9T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−17.19439882985066342462652274103, −15.95585913075066343180120649581, −15.26540180598407412080246546056, −14.08777643776746820189710207587, −12.72163279399230164755742844272, −11.05765279897405870925508428272, −8.792674763018713267488283483167, −7.33858803218183208350367612115, −5.50981562690680467665656021301, −4.40540228070355111938452123360, 1.50596623695673060604327933545, 3.68650261413003741380346724003, 5.68612600372883597512352142615, 8.148839507591337179809388701754, 10.69063636377348519966075350535, 11.19595284008474540462917354504, 12.59742753673654916291021060778, 13.66351218527995835355671435007, 14.77845794790042905049315471082, 16.81520701392112863019080952298

Graph of the ZZ-function along the critical line