L(s) = 1 | + (4.59 − 7.95i)2-s + (−4.5 − 7.79i)3-s + (−26.1 − 45.2i)4-s + (−11.0 + 19.1i)5-s − 82.6·6-s + (126. − 26.6i)7-s − 186.·8-s + (−40.5 + 70.1i)9-s + (101. + 175. i)10-s + (−208. − 360. i)11-s + (−235. + 407. i)12-s + 797.·13-s + (370. − 1.13e3i)14-s + 198.·15-s + (−18.6 + 32.3i)16-s + (687. + 1.19e3i)17-s + ⋯ |
L(s) = 1 | + (0.811 − 1.40i)2-s + (−0.288 − 0.499i)3-s + (−0.817 − 1.41i)4-s + (−0.197 + 0.341i)5-s − 0.937·6-s + (0.978 − 0.205i)7-s − 1.02·8-s + (−0.166 + 0.288i)9-s + (0.320 + 0.554i)10-s + (−0.519 − 0.899i)11-s + (−0.471 + 0.817i)12-s + 1.30·13-s + (0.505 − 1.54i)14-s + 0.227·15-s + (−0.0182 + 0.0315i)16-s + (0.577 + 0.999i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 21 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.701 + 0.712i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.701 + 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.739914 - 1.76562i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.739914 - 1.76562i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (4.5 + 7.79i)T \) |
| 7 | \( 1 + (-126. + 26.6i)T \) |
good | 2 | \( 1 + (-4.59 + 7.95i)T + (-16 - 27.7i)T^{2} \) |
| 5 | \( 1 + (11.0 - 19.1i)T + (-1.56e3 - 2.70e3i)T^{2} \) |
| 11 | \( 1 + (208. + 360. i)T + (-8.05e4 + 1.39e5i)T^{2} \) |
| 13 | \( 1 - 797.T + 3.71e5T^{2} \) |
| 17 | \( 1 + (-687. - 1.19e3i)T + (-7.09e5 + 1.22e6i)T^{2} \) |
| 19 | \( 1 + (1.15e3 - 2.00e3i)T + (-1.23e6 - 2.14e6i)T^{2} \) |
| 23 | \( 1 + (-477. + 827. i)T + (-3.21e6 - 5.57e6i)T^{2} \) |
| 29 | \( 1 + 7.03e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (630. + 1.09e3i)T + (-1.43e7 + 2.47e7i)T^{2} \) |
| 37 | \( 1 + (4.88e3 - 8.46e3i)T + (-3.46e7 - 6.00e7i)T^{2} \) |
| 41 | \( 1 + 5.40e3T + 1.15e8T^{2} \) |
| 43 | \( 1 - 1.96e4T + 1.47e8T^{2} \) |
| 47 | \( 1 + (1.02e3 - 1.78e3i)T + (-1.14e8 - 1.98e8i)T^{2} \) |
| 53 | \( 1 + (9.01e3 + 1.56e4i)T + (-2.09e8 + 3.62e8i)T^{2} \) |
| 59 | \( 1 + (3.71e3 + 6.43e3i)T + (-3.57e8 + 6.19e8i)T^{2} \) |
| 61 | \( 1 + (1.74e3 - 3.02e3i)T + (-4.22e8 - 7.31e8i)T^{2} \) |
| 67 | \( 1 + (7.92e3 + 1.37e4i)T + (-6.75e8 + 1.16e9i)T^{2} \) |
| 71 | \( 1 - 5.81e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (1.95e4 + 3.38e4i)T + (-1.03e9 + 1.79e9i)T^{2} \) |
| 79 | \( 1 + (4.88e3 - 8.45e3i)T + (-1.53e9 - 2.66e9i)T^{2} \) |
| 83 | \( 1 + 7.03e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (7.21e4 - 1.24e5i)T + (-2.79e9 - 4.83e9i)T^{2} \) |
| 97 | \( 1 + 7.93e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.81520701392112863019080952298, −14.77845794790042905049315471082, −13.66351218527995835355671435007, −12.59742753673654916291021060778, −11.19595284008474540462917354504, −10.69063636377348519966075350535, −8.148839507591337179809388701754, −5.68612600372883597512352142615, −3.68650261413003741380346724003, −1.50596623695673060604327933545,
4.40540228070355111938452123360, 5.50981562690680467665656021301, 7.33858803218183208350367612115, 8.792674763018713267488283483167, 11.05765279897405870925508428272, 12.72163279399230164755742844272, 14.08777643776746820189710207587, 15.26540180598407412080246546056, 15.95585913075066343180120649581, 17.19439882985066342462652274103