Properties

Label 2-200376-1.1-c1-0-15
Degree $2$
Conductor $200376$
Sign $-1$
Analytic cond. $1600.01$
Root an. cond. $40.0001$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 5·7-s − 5·13-s + 6·17-s − 5·19-s + 23-s − 4·25-s − 6·29-s + 10·31-s + 5·35-s − 4·43-s − 8·47-s + 18·49-s + 53-s − 3·59-s + 14·61-s + 5·65-s − 5·67-s + 9·71-s + 5·73-s + 79-s − 4·83-s − 6·85-s − 2·89-s + 25·91-s + 5·95-s + 8·97-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.88·7-s − 1.38·13-s + 1.45·17-s − 1.14·19-s + 0.208·23-s − 4/5·25-s − 1.11·29-s + 1.79·31-s + 0.845·35-s − 0.609·43-s − 1.16·47-s + 18/7·49-s + 0.137·53-s − 0.390·59-s + 1.79·61-s + 0.620·65-s − 0.610·67-s + 1.06·71-s + 0.585·73-s + 0.112·79-s − 0.439·83-s − 0.650·85-s − 0.211·89-s + 2.62·91-s + 0.512·95-s + 0.812·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 200376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200376 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(200376\)    =    \(2^{3} \cdot 3^{2} \cdot 11^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(1600.01\)
Root analytic conductor: \(40.0001\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 200376,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
23 \( 1 - T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 + 5 T + p T^{2} \) 1.7.f
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 5 T + p T^{2} \) 1.19.f
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - T + p T^{2} \) 1.53.ab
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 - 5 T + p T^{2} \) 1.73.af
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.17743684834807, −12.84306992693574, −12.29244311017231, −12.03751420899665, −11.62800560402360, −10.87469250250018, −10.28338819183157, −9.950904091598326, −9.616599843335984, −9.273953854362594, −8.493001070766395, −7.949444362272346, −7.665397636723883, −6.815487419292476, −6.740410647733494, −6.138072844489781, −5.493383170968289, −5.116355075778717, −4.293732016736449, −3.825430245309851, −3.387737366147656, −2.717357034528428, −2.422964249668047, −1.459520843650894, −0.5266121277975379, 0, 0.5266121277975379, 1.459520843650894, 2.422964249668047, 2.717357034528428, 3.387737366147656, 3.825430245309851, 4.293732016736449, 5.116355075778717, 5.493383170968289, 6.138072844489781, 6.740410647733494, 6.815487419292476, 7.665397636723883, 7.949444362272346, 8.493001070766395, 9.273953854362594, 9.616599843335984, 9.950904091598326, 10.28338819183157, 10.87469250250018, 11.62800560402360, 12.03751420899665, 12.29244311017231, 12.84306992693574, 13.17743684834807

Graph of the $Z$-function along the critical line