L(s) = 1 | + 9i·3-s − 26i·7-s − 54·9-s − 59·11-s + 28i·13-s − 5i·17-s − 109·19-s + 234·21-s − 194i·23-s − 243i·27-s + 32·29-s + 10·31-s − 531i·33-s + 198i·37-s − 252·39-s + ⋯ |
L(s) = 1 | + 1.73i·3-s − 1.40i·7-s − 2·9-s − 1.61·11-s + 0.597i·13-s − 0.0713i·17-s − 1.31·19-s + 2.43·21-s − 1.75i·23-s − 1.73i·27-s + 0.204·29-s + 0.0579·31-s − 2.80i·33-s + 0.879i·37-s − 1.03·39-s + ⋯ |
Λ(s)=(=(200s/2ΓC(s)L(s)(−0.447+0.894i)Λ(4−s)
Λ(s)=(=(200s/2ΓC(s+3/2)L(s)(−0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
200
= 23⋅52
|
Sign: |
−0.447+0.894i
|
Analytic conductor: |
11.8003 |
Root analytic conductor: |
3.43516 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ200(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 200, ( :3/2), −0.447+0.894i)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1−9iT−27T2 |
| 7 | 1+26iT−343T2 |
| 11 | 1+59T+1.33e3T2 |
| 13 | 1−28iT−2.19e3T2 |
| 17 | 1+5iT−4.91e3T2 |
| 19 | 1+109T+6.85e3T2 |
| 23 | 1+194iT−1.21e4T2 |
| 29 | 1−32T+2.43e4T2 |
| 31 | 1−10T+2.97e4T2 |
| 37 | 1−198iT−5.06e4T2 |
| 41 | 1−117T+6.89e4T2 |
| 43 | 1−388iT−7.95e4T2 |
| 47 | 1−68iT−1.03e5T2 |
| 53 | 1+18iT−1.48e5T2 |
| 59 | 1+392T+2.05e5T2 |
| 61 | 1+710T+2.26e5T2 |
| 67 | 1−253iT−3.00e5T2 |
| 71 | 1+612T+3.57e5T2 |
| 73 | 1+549iT−3.89e5T2 |
| 79 | 1+414T+4.93e5T2 |
| 83 | 1+121iT−5.71e5T2 |
| 89 | 1−81T+7.04e5T2 |
| 97 | 1−1.50e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.15393938352522419346794942557, −10.49402007663718025376895868752, −10.11515541157881633164754281975, −8.845914893732051975166137237585, −7.82334988108034490830774446384, −6.31954877183554949997475755517, −4.74456189187046857897397817155, −4.30213702937028984728472696706, −2.86651536518036680132163365638, 0,
1.93969814527912622473200520647, 2.83505152557841791525048598942, 5.40348380460050031519800036264, 6.01862108603600452737511220259, 7.38160533140963653868149082931, 8.104698253017225594076831966140, 8.979985282582842188120706929513, 10.57688960264807055982568372232, 11.67348721665217986390393719824