Properties

Label 2-198198-1.1-c1-0-124
Degree $2$
Conductor $198198$
Sign $-1$
Analytic cond. $1582.61$
Root an. cond. $39.7821$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 4·5-s + 7-s + 8-s + 4·10-s − 13-s + 14-s + 16-s − 2·17-s + 7·19-s + 4·20-s − 6·23-s + 11·25-s − 26-s + 28-s − 3·29-s − 6·31-s + 32-s − 2·34-s + 4·35-s − 2·37-s + 7·38-s + 4·40-s − 5·41-s + 4·43-s − 6·46-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 1.78·5-s + 0.377·7-s + 0.353·8-s + 1.26·10-s − 0.277·13-s + 0.267·14-s + 1/4·16-s − 0.485·17-s + 1.60·19-s + 0.894·20-s − 1.25·23-s + 11/5·25-s − 0.196·26-s + 0.188·28-s − 0.557·29-s − 1.07·31-s + 0.176·32-s − 0.342·34-s + 0.676·35-s − 0.328·37-s + 1.13·38-s + 0.632·40-s − 0.780·41-s + 0.609·43-s − 0.884·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 198198 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 198198 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(198198\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1582.61\)
Root analytic conductor: \(39.7821\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 198198,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 - T \)
11 \( 1 \)
13 \( 1 + T \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 15 T + p T^{2} \) 1.67.ap
71 \( 1 + 13 T + p T^{2} \) 1.71.n
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.29325526569779, −13.07389203179945, −12.43459810780550, −12.00639147678146, −11.42846892745092, −11.02345732216476, −10.50650772251860, −9.883225498843216, −9.662210422450270, −9.288647353218750, −8.502796868962555, −8.141281384446139, −7.232511354079111, −7.114920008289858, −6.401455125296612, −5.885061856623901, −5.466207476294847, −5.222325018160381, −4.578580466394056, −3.953863117834468, −3.253969935438452, −2.750100236217631, −2.086372275908229, −1.693633332448824, −1.194454651556501, 0, 1.194454651556501, 1.693633332448824, 2.086372275908229, 2.750100236217631, 3.253969935438452, 3.953863117834468, 4.578580466394056, 5.222325018160381, 5.466207476294847, 5.885061856623901, 6.401455125296612, 7.114920008289858, 7.232511354079111, 8.141281384446139, 8.502796868962555, 9.288647353218750, 9.662210422450270, 9.883225498843216, 10.50650772251860, 11.02345732216476, 11.42846892745092, 12.00639147678146, 12.43459810780550, 13.07389203179945, 13.29325526569779

Graph of the $Z$-function along the critical line