Properties

Label 2-19536-1.1-c1-0-24
Degree $2$
Conductor $19536$
Sign $-1$
Analytic cond. $155.995$
Root an. cond. $12.4898$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s − 11-s + 2·13-s − 4·17-s − 2·19-s − 5·25-s + 27-s − 4·29-s + 2·31-s − 33-s − 37-s + 2·39-s + 10·41-s + 2·43-s + 8·47-s − 7·49-s − 4·51-s + 10·53-s − 2·57-s − 10·61-s + 8·67-s − 16·71-s + 10·73-s − 5·75-s + 14·79-s + 81-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s − 0.301·11-s + 0.554·13-s − 0.970·17-s − 0.458·19-s − 25-s + 0.192·27-s − 0.742·29-s + 0.359·31-s − 0.174·33-s − 0.164·37-s + 0.320·39-s + 1.56·41-s + 0.304·43-s + 1.16·47-s − 49-s − 0.560·51-s + 1.37·53-s − 0.264·57-s − 1.28·61-s + 0.977·67-s − 1.89·71-s + 1.17·73-s − 0.577·75-s + 1.57·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19536 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19536 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19536\)    =    \(2^{4} \cdot 3 \cdot 11 \cdot 37\)
Sign: $-1$
Analytic conductor: \(155.995\)
Root analytic conductor: \(12.4898\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 19536,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 + T \)
37 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.90444127421554, −15.28757496789667, −15.06027254614426, −14.26881866920561, −13.66716931848766, −13.42620804270563, −12.71832012324761, −12.27182437328149, −11.45058429404321, −10.95206752034526, −10.49536264025876, −9.700895416884941, −9.226836219477109, −8.672659803994774, −8.087782328763402, −7.524529319196411, −6.912238515462627, −6.146776425561176, −5.681517956263061, −4.750658085067436, −4.103195178190372, −3.622039823920595, −2.608542847144417, −2.160221202839836, −1.190152853545647, 0, 1.190152853545647, 2.160221202839836, 2.608542847144417, 3.622039823920595, 4.103195178190372, 4.750658085067436, 5.681517956263061, 6.146776425561176, 6.912238515462627, 7.524529319196411, 8.087782328763402, 8.672659803994774, 9.226836219477109, 9.700895416884941, 10.49536264025876, 10.95206752034526, 11.45058429404321, 12.27182437328149, 12.71832012324761, 13.42620804270563, 13.66716931848766, 14.26881866920561, 15.06027254614426, 15.28757496789667, 15.90444127421554

Graph of the $Z$-function along the critical line