Properties

Label 2-193550-1.1-c1-0-26
Degree $2$
Conductor $193550$
Sign $1$
Analytic cond. $1545.50$
Root an. cond. $39.3129$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3·3-s + 4-s − 3·6-s − 8-s + 6·9-s − 3·11-s + 3·12-s − 4·13-s + 16-s + 3·17-s − 6·18-s + 5·19-s + 3·22-s + 4·23-s − 3·24-s + 4·26-s + 9·27-s − 8·31-s − 32-s − 9·33-s − 3·34-s + 6·36-s − 4·37-s − 5·38-s − 12·39-s + 11·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.73·3-s + 1/2·4-s − 1.22·6-s − 0.353·8-s + 2·9-s − 0.904·11-s + 0.866·12-s − 1.10·13-s + 1/4·16-s + 0.727·17-s − 1.41·18-s + 1.14·19-s + 0.639·22-s + 0.834·23-s − 0.612·24-s + 0.784·26-s + 1.73·27-s − 1.43·31-s − 0.176·32-s − 1.56·33-s − 0.514·34-s + 36-s − 0.657·37-s − 0.811·38-s − 1.92·39-s + 1.71·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 193550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 193550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(193550\)    =    \(2 \cdot 5^{2} \cdot 7^{2} \cdot 79\)
Sign: $1$
Analytic conductor: \(1545.50\)
Root analytic conductor: \(39.3129\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 193550,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.766172318\)
\(L(\frac12)\) \(\approx\) \(3.766172318\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
79 \( 1 - T \)
good3 \( 1 - p T + p T^{2} \) 1.3.ad
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 11 T + p T^{2} \) 1.41.al
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 + T + p T^{2} \) 1.73.b
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 - 11 T + p T^{2} \) 1.89.al
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.99204231376796, −12.83220320355571, −12.26294453979126, −11.65122872088888, −11.10645009073535, −10.55305660162405, −9.967440304932921, −9.671588033426837, −9.405907400732923, −8.792695400344188, −8.317825022965765, −7.886311705441099, −7.528159813833028, −7.075121596060296, −6.774568599483259, −5.675710861291354, −5.226478784423158, −4.831015083127810, −3.779620332964828, −3.551178342230027, −2.897624770093585, −2.418235078569965, −2.052325620137257, −1.243389264926036, −0.5579628015024135, 0.5579628015024135, 1.243389264926036, 2.052325620137257, 2.418235078569965, 2.897624770093585, 3.551178342230027, 3.779620332964828, 4.831015083127810, 5.226478784423158, 5.675710861291354, 6.774568599483259, 7.075121596060296, 7.528159813833028, 7.886311705441099, 8.317825022965765, 8.792695400344188, 9.405907400732923, 9.671588033426837, 9.967440304932921, 10.55305660162405, 11.10645009073535, 11.65122872088888, 12.26294453979126, 12.83220320355571, 12.99204231376796

Graph of the $Z$-function along the critical line