| L(s)  = 1  |     + i·3-s     + (0.609 − 2.15i)5-s     + (0.566 + 0.566i)7-s     − 9-s     + (−3.64 − 3.64i)11-s     + 2.74·13-s     + (2.15 + 0.609i)15-s     + (2.08 + 2.08i)17-s     + (−5.79 − 5.79i)19-s     + (−0.566 + 0.566i)21-s     + (−4.28 + 4.28i)23-s     + (−4.25 − 2.62i)25-s     − i·27-s     + (−2.63 + 2.63i)29-s     − 8.10i·31-s    + ⋯ | 
 
| L(s)  = 1  |     + 0.577i·3-s     + (0.272 − 0.962i)5-s     + (0.214 + 0.214i)7-s     − 0.333·9-s     + (−1.09 − 1.09i)11-s     + 0.760·13-s     + (0.555 + 0.157i)15-s     + (0.505 + 0.505i)17-s     + (−1.32 − 1.32i)19-s     + (−0.123 + 0.123i)21-s     + (−0.892 + 0.892i)23-s     + (−0.851 − 0.524i)25-s     − 0.192i·27-s     + (−0.489 + 0.489i)29-s     − 1.45i·31-s    + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.613 + 0.789i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.613 + 0.789i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(\approx\) | 
             \(0.8387817371\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(\approx\) | 
      
       \(0.8387817371\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | 
|---|
| bad | 2 |  \( 1 \)  | 
 | 3 |  \( 1 - iT \)  | 
 | 5 |  \( 1 + (-0.609 + 2.15i)T \)  | 
| good | 7 |  \( 1 + (-0.566 - 0.566i)T + 7iT^{2} \)  | 
 | 11 |  \( 1 + (3.64 + 3.64i)T + 11iT^{2} \)  | 
 | 13 |  \( 1 - 2.74T + 13T^{2} \)  | 
 | 17 |  \( 1 + (-2.08 - 2.08i)T + 17iT^{2} \)  | 
 | 19 |  \( 1 + (5.79 + 5.79i)T + 19iT^{2} \)  | 
 | 23 |  \( 1 + (4.28 - 4.28i)T - 23iT^{2} \)  | 
 | 29 |  \( 1 + (2.63 - 2.63i)T - 29iT^{2} \)  | 
 | 31 |  \( 1 + 8.10iT - 31T^{2} \)  | 
 | 37 |  \( 1 - 2.28T + 37T^{2} \)  | 
 | 41 |  \( 1 - 2.27iT - 41T^{2} \)  | 
 | 43 |  \( 1 + 3.06T + 43T^{2} \)  | 
 | 47 |  \( 1 + (1.80 - 1.80i)T - 47iT^{2} \)  | 
 | 53 |  \( 1 - 6.32iT - 53T^{2} \)  | 
 | 59 |  \( 1 + (5.56 - 5.56i)T - 59iT^{2} \)  | 
 | 61 |  \( 1 + (4.82 + 4.82i)T + 61iT^{2} \)  | 
 | 67 |  \( 1 + 3.34T + 67T^{2} \)  | 
 | 71 |  \( 1 + 2.81T + 71T^{2} \)  | 
 | 73 |  \( 1 + (10.7 + 10.7i)T + 73iT^{2} \)  | 
 | 79 |  \( 1 - 12.1T + 79T^{2} \)  | 
 | 83 |  \( 1 + 1.97iT - 83T^{2} \)  | 
 | 89 |  \( 1 + 10.0T + 89T^{2} \)  | 
 | 97 |  \( 1 + (1.02 + 1.02i)T + 97iT^{2} \)  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−8.859091854464964047417047306015, −8.322538899131571765279122066978, −7.67372188599854003438478699520, −6.09678335470837403468399692591, −5.77751369409300002665221255429, −4.85391915188864612619736820027, −4.06389206077893432835517517233, −3.01423994271802970071453435321, −1.80940802886379468712955103043, −0.28224838032415902157166295126, 
1.69596306063600972339445650089, 2.45381937734027330020887561432, 3.53850523536078556020986154154, 4.58672591681878957884047545747, 5.70095414795233902344182356209, 6.36352346536470650469562610290, 7.14795132398772159138052134682, 7.86373480795585482758131496988, 8.423296415393541172645764044157, 9.655713425768943489350631421365