L(s) = 1 | − i·3-s + i·5-s − 2·7-s − 9-s + 2i·11-s − 2i·13-s + 15-s + 4·17-s − 4i·19-s + 2i·21-s − 4·23-s − 25-s + i·27-s − 2i·29-s − 4·31-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + 0.447i·5-s − 0.755·7-s − 0.333·9-s + 0.603i·11-s − 0.554i·13-s + 0.258·15-s + 0.970·17-s − 0.917i·19-s + 0.436i·21-s − 0.834·23-s − 0.200·25-s + 0.192i·27-s − 0.371i·29-s − 0.718·31-s + ⋯ |
Λ(s)=(=(1920s/2ΓC(s)L(s)(−0.707+0.707i)Λ(2−s)
Λ(s)=(=(1920s/2ΓC(s+1/2)L(s)(−0.707+0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
1920
= 27⋅3⋅5
|
Sign: |
−0.707+0.707i
|
Analytic conductor: |
15.3312 |
Root analytic conductor: |
3.91551 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1920(961,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1920, ( :1/2), −0.707+0.707i)
|
Particular Values
L(1) |
≈ |
0.7888945846 |
L(21) |
≈ |
0.7888945846 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+iT |
| 5 | 1−iT |
good | 7 | 1+2T+7T2 |
| 11 | 1−2iT−11T2 |
| 13 | 1+2iT−13T2 |
| 17 | 1−4T+17T2 |
| 19 | 1+4iT−19T2 |
| 23 | 1+4T+23T2 |
| 29 | 1+2iT−29T2 |
| 31 | 1+4T+31T2 |
| 37 | 1+2iT−37T2 |
| 41 | 1−6T+41T2 |
| 43 | 1+4iT−43T2 |
| 47 | 1+8T+47T2 |
| 53 | 1+10iT−53T2 |
| 59 | 1+6iT−59T2 |
| 61 | 1−61T2 |
| 67 | 1+12iT−67T2 |
| 71 | 1+8T+71T2 |
| 73 | 1+6T+73T2 |
| 79 | 1+4T+79T2 |
| 83 | 1+16iT−83T2 |
| 89 | 1+6T+89T2 |
| 97 | 1+14T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.937392507723227211213638940724, −7.899202937869052609940500356239, −7.37914790000760467276501922256, −6.55596640815945222061463406359, −5.89309596563536002351928267567, −4.94519115195961000641508632514, −3.69469712571173470165046296228, −2.91086673768889109528669180180, −1.86768577791447890582072157859, −0.28752645143261348999817777872,
1.38644709173511764815421094461, 2.88724812615568754402538124865, 3.71639244827035964013692630335, 4.48796454073255759835434882804, 5.66396393363963465040847778028, 6.03297402500341719169067061997, 7.17606597733154616563819357780, 8.091336129868759217900724226901, 8.767485436494887063419299969576, 9.641214052552447118854817027544