Properties

Label 2-1920-8.5-c1-0-3
Degree $2$
Conductor $1920$
Sign $-0.707 - 0.707i$
Analytic cond. $15.3312$
Root an. cond. $3.91551$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·3-s i·5-s − 2·7-s − 9-s − 2i·11-s + 2i·13-s + 15-s + 4·17-s + 4i·19-s − 2i·21-s − 4·23-s − 25-s i·27-s + 2i·29-s − 4·31-s + ⋯
L(s)  = 1  + 0.577i·3-s − 0.447i·5-s − 0.755·7-s − 0.333·9-s − 0.603i·11-s + 0.554i·13-s + 0.258·15-s + 0.970·17-s + 0.917i·19-s − 0.436i·21-s − 0.834·23-s − 0.200·25-s − 0.192i·27-s + 0.371i·29-s − 0.718·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1920\)    =    \(2^{7} \cdot 3 \cdot 5\)
Sign: $-0.707 - 0.707i$
Analytic conductor: \(15.3312\)
Root analytic conductor: \(3.91551\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1920} (961, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1920,\ (\ :1/2),\ -0.707 - 0.707i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7888945846\)
\(L(\frac12)\) \(\approx\) \(0.7888945846\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - iT \)
5 \( 1 + iT \)
good7 \( 1 + 2T + 7T^{2} \)
11 \( 1 + 2iT - 11T^{2} \)
13 \( 1 - 2iT - 13T^{2} \)
17 \( 1 - 4T + 17T^{2} \)
19 \( 1 - 4iT - 19T^{2} \)
23 \( 1 + 4T + 23T^{2} \)
29 \( 1 - 2iT - 29T^{2} \)
31 \( 1 + 4T + 31T^{2} \)
37 \( 1 - 2iT - 37T^{2} \)
41 \( 1 - 6T + 41T^{2} \)
43 \( 1 - 4iT - 43T^{2} \)
47 \( 1 + 8T + 47T^{2} \)
53 \( 1 - 10iT - 53T^{2} \)
59 \( 1 - 6iT - 59T^{2} \)
61 \( 1 - 61T^{2} \)
67 \( 1 - 12iT - 67T^{2} \)
71 \( 1 + 8T + 71T^{2} \)
73 \( 1 + 6T + 73T^{2} \)
79 \( 1 + 4T + 79T^{2} \)
83 \( 1 - 16iT - 83T^{2} \)
89 \( 1 + 6T + 89T^{2} \)
97 \( 1 + 14T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.641214052552447118854817027544, −8.767485436494887063419299969576, −8.091336129868759217900724226901, −7.17606597733154616563819357780, −6.03297402500341719169067061997, −5.66396393363963465040847778028, −4.48796454073255759835434882804, −3.71639244827035964013692630335, −2.88724812615568754402538124865, −1.38644709173511764815421094461, 0.28752645143261348999817777872, 1.86768577791447890582072157859, 2.91086673768889109528669180180, 3.69469712571173470165046296228, 4.94519115195961000641508632514, 5.89309596563536002351928267567, 6.55596640815945222061463406359, 7.37914790000760467276501922256, 7.899202937869052609940500356239, 8.937392507723227211213638940724

Graph of the $Z$-function along the critical line