L(s) = 1 | + 3-s − 5-s + 9-s − 15-s + 2·23-s + 25-s + 27-s + 2·29-s − 2·43-s − 45-s − 2·47-s + 49-s − 2·67-s + 2·69-s + 75-s + 81-s + 2·87-s − 2·101-s − 2·115-s + ⋯ |
L(s) = 1 | + 3-s − 5-s + 9-s − 15-s + 2·23-s + 25-s + 27-s + 2·29-s − 2·43-s − 45-s − 2·47-s + 49-s − 2·67-s + 2·69-s + 75-s + 81-s + 2·87-s − 2·101-s − 2·115-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.454658268\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.454658268\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 + T \) |
good | 7 | \( ( 1 - T )( 1 + T ) \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( ( 1 - T )( 1 + T ) \) |
| 23 | \( ( 1 - T )^{2} \) |
| 29 | \( ( 1 - T )^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( ( 1 + T )^{2} \) |
| 47 | \( ( 1 + T )^{2} \) |
| 53 | \( ( 1 - T )( 1 + T ) \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( ( 1 - T )( 1 + T ) \) |
| 67 | \( ( 1 + T )^{2} \) |
| 71 | \( ( 1 - T )( 1 + T ) \) |
| 73 | \( ( 1 - T )( 1 + T ) \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( ( 1 - T )( 1 + T ) \) |
| 89 | \( ( 1 - T )( 1 + T ) \) |
| 97 | \( ( 1 - T )( 1 + T ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.179210280473523518106314995696, −8.510962056244315159026050849397, −8.020613959539927655761921301808, −7.07599363653659849852651018625, −6.62185779670699238639830397820, −5.02238501407956788899052562966, −4.44338872261501732133845493065, −3.34354572797465442821691930728, −2.82767799087238506487837947276, −1.28822101635495953522537599373,
1.28822101635495953522537599373, 2.82767799087238506487837947276, 3.34354572797465442821691930728, 4.44338872261501732133845493065, 5.02238501407956788899052562966, 6.62185779670699238639830397820, 7.07599363653659849852651018625, 8.020613959539927655761921301808, 8.510962056244315159026050849397, 9.179210280473523518106314995696