L(s) = 1 | + (0.0749 + 5.19i)3-s + (−5.37 + 5.37i)5-s − 14.8·7-s + (−26.9 + 0.779i)9-s + (−30.0 − 30.0i)11-s + (61.5 − 61.5i)13-s + (−28.3 − 27.5i)15-s + 48.8i·17-s + (−7.45 − 7.45i)19-s + (−1.11 − 77.1i)21-s − 43.0i·23-s + 67.1i·25-s + (−6.07 − 140. i)27-s + (−32.9 − 32.9i)29-s − 173. i·31-s + ⋯ |
L(s) = 1 | + (0.0144 + 0.999i)3-s + (−0.480 + 0.480i)5-s − 0.802·7-s + (−0.999 + 0.0288i)9-s + (−0.823 − 0.823i)11-s + (1.31 − 1.31i)13-s + (−0.487 − 0.473i)15-s + 0.696i·17-s + (−0.0900 − 0.0900i)19-s + (−0.0115 − 0.802i)21-s − 0.390i·23-s + 0.537i·25-s + (−0.0432 − 0.999i)27-s + (−0.211 − 0.211i)29-s − 1.00i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.350 + 0.936i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 192 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.350 + 0.936i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.120098 - 0.173219i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.120098 - 0.173219i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.0749 - 5.19i)T \) |
good | 5 | \( 1 + (5.37 - 5.37i)T - 125iT^{2} \) |
| 7 | \( 1 + 14.8T + 343T^{2} \) |
| 11 | \( 1 + (30.0 + 30.0i)T + 1.33e3iT^{2} \) |
| 13 | \( 1 + (-61.5 + 61.5i)T - 2.19e3iT^{2} \) |
| 17 | \( 1 - 48.8iT - 4.91e3T^{2} \) |
| 19 | \( 1 + (7.45 + 7.45i)T + 6.85e3iT^{2} \) |
| 23 | \( 1 + 43.0iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (32.9 + 32.9i)T + 2.43e4iT^{2} \) |
| 31 | \( 1 + 173. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (177. + 177. i)T + 5.06e4iT^{2} \) |
| 41 | \( 1 + 454.T + 6.89e4T^{2} \) |
| 43 | \( 1 + (239. - 239. i)T - 7.95e4iT^{2} \) |
| 47 | \( 1 + 30.4T + 1.03e5T^{2} \) |
| 53 | \( 1 + (-235. + 235. i)T - 1.48e5iT^{2} \) |
| 59 | \( 1 + (260. + 260. i)T + 2.05e5iT^{2} \) |
| 61 | \( 1 + (388. - 388. i)T - 2.26e5iT^{2} \) |
| 67 | \( 1 + (334. + 334. i)T + 3.00e5iT^{2} \) |
| 71 | \( 1 - 522. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 689. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 692. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (-677. + 677. i)T - 5.71e5iT^{2} \) |
| 89 | \( 1 - 261.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 641.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.42264366930159713970073654482, −10.71497476968494556762505863442, −10.05753266386794950158774735001, −8.714888378367830831474390204834, −7.958272901086811850949402554723, −6.29806868990163245079235830357, −5.41284114458614990382055656290, −3.70480640461604313135418352436, −3.08645685403308174974617907759, −0.089985197059597934133344280965,
1.67909111966995395150754456358, 3.34021752928933806963021807893, 4.92412417560349813880165307851, 6.38390587401716926846426688639, 7.15268440390424408036089502616, 8.329910356689062415626012460914, 9.154061270142834531909435019499, 10.49797428106309188856438011762, 11.78697150932590729329536526021, 12.28944362922285765985864206143