Properties

Label 2-19110-1.1-c1-0-46
Degree $2$
Conductor $19110$
Sign $-1$
Analytic cond. $152.594$
Root an. cond. $12.3528$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 5-s − 6-s − 8-s + 9-s + 10-s − 11-s + 12-s − 13-s − 15-s + 16-s + 3·17-s − 18-s − 2·19-s − 20-s + 22-s − 5·23-s − 24-s + 25-s + 26-s + 27-s + 2·29-s + 30-s − 32-s − 33-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s + 0.316·10-s − 0.301·11-s + 0.288·12-s − 0.277·13-s − 0.258·15-s + 1/4·16-s + 0.727·17-s − 0.235·18-s − 0.458·19-s − 0.223·20-s + 0.213·22-s − 1.04·23-s − 0.204·24-s + 1/5·25-s + 0.196·26-s + 0.192·27-s + 0.371·29-s + 0.182·30-s − 0.176·32-s − 0.174·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19110\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(152.594\)
Root analytic conductor: \(12.3528\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 19110,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 \)
13 \( 1 + T \)
good11 \( 1 + T + p T^{2} \) 1.11.b
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 5 T + p T^{2} \) 1.23.f
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 - 11 T + p T^{2} \) 1.59.al
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 13 T + p T^{2} \) 1.73.n
79 \( 1 + 5 T + p T^{2} \) 1.79.f
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 - 9 T + p T^{2} \) 1.97.aj
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.03741628663085, −15.63455565848094, −14.69347015994990, −14.65620701468520, −13.96524342636199, −13.14153099250438, −12.69402561982348, −12.09647469003201, −11.56888471769966, −10.85741504746511, −10.40650639753286, −9.672062340505683, −9.395443512290549, −8.563358040303806, −8.053859597738461, −7.662400422227525, −7.134867121277350, −6.213727386299018, −5.820006494371107, −4.714639835530434, −4.220947677416035, −3.319223759435720, −2.736373263645974, −1.969680594690731, −1.061058657603217, 0, 1.061058657603217, 1.969680594690731, 2.736373263645974, 3.319223759435720, 4.220947677416035, 4.714639835530434, 5.820006494371107, 6.213727386299018, 7.134867121277350, 7.662400422227525, 8.053859597738461, 8.563358040303806, 9.395443512290549, 9.672062340505683, 10.40650639753286, 10.85741504746511, 11.56888471769966, 12.09647469003201, 12.69402561982348, 13.14153099250438, 13.96524342636199, 14.65620701468520, 14.69347015994990, 15.63455565848094, 16.03741628663085

Graph of the $Z$-function along the critical line