Properties

Label 2-19110-1.1-c1-0-28
Degree $2$
Conductor $19110$
Sign $1$
Analytic cond. $152.594$
Root an. cond. $12.3528$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 5-s + 6-s + 8-s + 9-s + 10-s − 11-s + 12-s − 13-s + 15-s + 16-s + 3·17-s + 18-s − 6·19-s + 20-s − 22-s + 23-s + 24-s + 25-s − 26-s + 27-s + 6·29-s + 30-s − 8·31-s + 32-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s + 0.353·8-s + 1/3·9-s + 0.316·10-s − 0.301·11-s + 0.288·12-s − 0.277·13-s + 0.258·15-s + 1/4·16-s + 0.727·17-s + 0.235·18-s − 1.37·19-s + 0.223·20-s − 0.213·22-s + 0.208·23-s + 0.204·24-s + 1/5·25-s − 0.196·26-s + 0.192·27-s + 1.11·29-s + 0.182·30-s − 1.43·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19110\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(152.594\)
Root analytic conductor: \(12.3528\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 19110,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.000004154\)
\(L(\frac12)\) \(\approx\) \(5.000004154\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 + T \)
good11 \( 1 + T + p T^{2} \) 1.11.b
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 5 T + p T^{2} \) 1.59.af
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 + 17 T + p T^{2} \) 1.79.r
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 5 T + p T^{2} \) 1.89.af
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.67198803906613, −14.91941609600402, −14.63356760652523, −14.12333608792631, −13.58676065939378, −12.98572679609509, −12.56813383735967, −12.13000028285676, −11.28870204053370, −10.68229061850528, −10.20987510036941, −9.677150313429094, −8.806974756466253, −8.491830487608978, −7.649562605076903, −7.110648207878823, −6.523957589960138, −5.762855133498003, −5.259695784251130, −4.517406425741243, −3.858576388039586, −3.192998608439874, −2.372720094070882, −1.946043771163756, −0.7939432884723676, 0.7939432884723676, 1.946043771163756, 2.372720094070882, 3.192998608439874, 3.858576388039586, 4.517406425741243, 5.259695784251130, 5.762855133498003, 6.523957589960138, 7.110648207878823, 7.649562605076903, 8.491830487608978, 8.806974756466253, 9.677150313429094, 10.20987510036941, 10.68229061850528, 11.28870204053370, 12.13000028285676, 12.56813383735967, 12.98572679609509, 13.58676065939378, 14.12333608792631, 14.63356760652523, 14.91941609600402, 15.67198803906613

Graph of the $Z$-function along the critical line