Properties

Label 2-190400-1.1-c1-0-24
Degree $2$
Conductor $190400$
Sign $1$
Analytic cond. $1520.35$
Root an. cond. $38.9916$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 7-s − 2·9-s − 2·11-s − 3·13-s − 17-s − 7·19-s − 21-s + 5·27-s − 9·29-s + 9·31-s + 2·33-s + 8·37-s + 3·39-s − 4·41-s + 12·43-s + 9·47-s + 49-s + 51-s + 3·53-s + 7·57-s − 3·59-s + 5·61-s − 2·63-s + 2·67-s + 9·71-s + 15·73-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.377·7-s − 2/3·9-s − 0.603·11-s − 0.832·13-s − 0.242·17-s − 1.60·19-s − 0.218·21-s + 0.962·27-s − 1.67·29-s + 1.61·31-s + 0.348·33-s + 1.31·37-s + 0.480·39-s − 0.624·41-s + 1.82·43-s + 1.31·47-s + 1/7·49-s + 0.140·51-s + 0.412·53-s + 0.927·57-s − 0.390·59-s + 0.640·61-s − 0.251·63-s + 0.244·67-s + 1.06·71-s + 1.75·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 190400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 190400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(190400\)    =    \(2^{6} \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(1520.35\)
Root analytic conductor: \(38.9916\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 190400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.319178047\)
\(L(\frac12)\) \(\approx\) \(1.319178047\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
17 \( 1 + T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + 3 T + p T^{2} \) 1.13.d
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - 9 T + p T^{2} \) 1.31.aj
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 - 15 T + p T^{2} \) 1.73.ap
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 5 T + p T^{2} \) 1.89.f
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.10565110775115, −12.46256144747812, −12.25173956322295, −11.70792286110803, −11.09132468916062, −10.81498133662991, −10.55935764600329, −9.715350648456613, −9.454439460336313, −8.730878251078015, −8.374875682293543, −7.754582632827338, −7.509194341507454, −6.638406957291550, −6.358373404424529, −5.780122931806186, −5.250837452706749, −4.887580526197522, −4.203975300337514, −3.854048939022778, −2.864514478266025, −2.336204552988641, −2.121788627645834, −0.9159663665040125, −0.4080142257835023, 0.4080142257835023, 0.9159663665040125, 2.121788627645834, 2.336204552988641, 2.864514478266025, 3.854048939022778, 4.203975300337514, 4.887580526197522, 5.250837452706749, 5.780122931806186, 6.358373404424529, 6.638406957291550, 7.509194341507454, 7.754582632827338, 8.374875682293543, 8.730878251078015, 9.454439460336313, 9.715350648456613, 10.55935764600329, 10.81498133662991, 11.09132468916062, 11.70792286110803, 12.25173956322295, 12.46256144747812, 13.10565110775115

Graph of the $Z$-function along the critical line