L(s) = 1 | + (−2.01e3 + 3.49e3i)7-s + (1.79e4 + 3.10e4i)13-s − 2.58e5·19-s + (−1.95e5 + 3.38e5i)25-s + (9.04e5 + 1.56e6i)31-s + 5.03e5·37-s + (−1.74e6 + 3.02e6i)43-s + (−5.25e6 − 9.10e6i)49-s + (1.19e7 − 2.06e7i)61-s + (2.71e6 + 4.69e6i)67-s + 1.61e7·73-s + (9.44e6 − 1.63e7i)79-s − 1.44e8·91-s + (−8.84e7 + 1.53e8i)97-s + (−2.22e7 − 3.84e7i)103-s + ⋯ |
L(s) = 1 | + (−0.840 + 1.45i)7-s + (0.626 + 1.08i)13-s − 1.98·19-s + (−0.5 + 0.866i)25-s + (0.979 + 1.69i)31-s + 0.268·37-s + (−0.510 + 0.884i)43-s + (−0.911 − 1.57i)49-s + (0.860 − 1.49i)61-s + (0.134 + 0.232i)67-s + 0.569·73-s + (0.242 − 0.419i)79-s − 2.10·91-s + (−0.999 + 1.73i)97-s + (−0.197 − 0.342i)103-s + ⋯ |
Λ(s)=(=(324s/2ΓC(s)L(s)(−0.642+0.766i)Λ(9−s)
Λ(s)=(=(324s/2ΓC(s+4)L(s)(−0.642+0.766i)Λ(1−s)
Degree: |
2 |
Conductor: |
324
= 22⋅34
|
Sign: |
−0.642+0.766i
|
Analytic conductor: |
131.990 |
Root analytic conductor: |
11.4887 |
Motivic weight: |
8 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ324(269,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 324, ( :4), −0.642+0.766i)
|
Particular Values
L(29) |
≈ |
0.4733780630 |
L(21) |
≈ |
0.4733780630 |
L(5) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+(1.95e5−3.38e5i)T2 |
| 7 | 1+(2.01e3−3.49e3i)T+(−2.88e6−4.99e6i)T2 |
| 11 | 1+(1.07e8+1.85e8i)T2 |
| 13 | 1+(−1.79e4−3.10e4i)T+(−4.07e8+7.06e8i)T2 |
| 17 | 1−6.97e9T2 |
| 19 | 1+2.58e5T+1.69e10T2 |
| 23 | 1+(3.91e10−6.78e10i)T2 |
| 29 | 1+(2.50e11+4.33e11i)T2 |
| 31 | 1+(−9.04e5−1.56e6i)T+(−4.26e11+7.38e11i)T2 |
| 37 | 1−5.03e5T+3.51e12T2 |
| 41 | 1+(3.99e12−6.91e12i)T2 |
| 43 | 1+(1.74e6−3.02e6i)T+(−5.84e12−1.01e13i)T2 |
| 47 | 1+(1.19e13+2.06e13i)T2 |
| 53 | 1−6.22e13T2 |
| 59 | 1+(7.34e13−1.27e14i)T2 |
| 61 | 1+(−1.19e7+2.06e7i)T+(−9.58e13−1.66e14i)T2 |
| 67 | 1+(−2.71e6−4.69e6i)T+(−2.03e14+3.51e14i)T2 |
| 71 | 1−6.45e14T2 |
| 73 | 1−1.61e7T+8.06e14T2 |
| 79 | 1+(−9.44e6+1.63e7i)T+(−7.58e14−1.31e15i)T2 |
| 83 | 1+(1.12e15+1.95e15i)T2 |
| 89 | 1−3.93e15T2 |
| 97 | 1+(8.84e7−1.53e8i)T+(−3.91e15−6.78e15i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.87659784576660504178985328767, −9.723228351268854373709354098227, −8.925777560684071260822647622830, −8.306940146030782519466177975796, −6.65203404376633550482421383891, −6.22715716114645624361080937818, −5.01241724588277672009945684442, −3.77105350827286726438428774383, −2.61724699338215760435855471286, −1.64287966455978582990305820425,
0.11582544503056237028526641737, 0.837357573385050783306262478861, 2.41460745194497708422375330832, 3.70005543371782148132541209702, 4.36156935697647920845673272182, 5.95636965011914742950809370120, 6.65822614359063744180628316725, 7.75469643550362731630167330637, 8.572922088094647786347454738559, 9.970639523467609981163765214133