L(s) = 1 | + (−2.01e3 − 3.49e3i)7-s + (1.79e4 − 3.10e4i)13-s − 2.58e5·19-s + (−1.95e5 − 3.38e5i)25-s + (9.04e5 − 1.56e6i)31-s + 5.03e5·37-s + (−1.74e6 − 3.02e6i)43-s + (−5.25e6 + 9.10e6i)49-s + (1.19e7 + 2.06e7i)61-s + (2.71e6 − 4.69e6i)67-s + 1.61e7·73-s + (9.44e6 + 1.63e7i)79-s − 1.44e8·91-s + (−8.84e7 − 1.53e8i)97-s + (−2.22e7 + 3.84e7i)103-s + ⋯ |
L(s) = 1 | + (−0.840 − 1.45i)7-s + (0.626 − 1.08i)13-s − 1.98·19-s + (−0.5 − 0.866i)25-s + (0.979 − 1.69i)31-s + 0.268·37-s + (−0.510 − 0.884i)43-s + (−0.911 + 1.57i)49-s + (0.860 + 1.49i)61-s + (0.134 − 0.232i)67-s + 0.569·73-s + (0.242 + 0.419i)79-s − 2.10·91-s + (−0.999 − 1.73i)97-s + (−0.197 + 0.342i)103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.642 - 0.766i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.642 - 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(0.4733780630\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4733780630\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (1.95e5 + 3.38e5i)T^{2} \) |
| 7 | \( 1 + (2.01e3 + 3.49e3i)T + (-2.88e6 + 4.99e6i)T^{2} \) |
| 11 | \( 1 + (1.07e8 - 1.85e8i)T^{2} \) |
| 13 | \( 1 + (-1.79e4 + 3.10e4i)T + (-4.07e8 - 7.06e8i)T^{2} \) |
| 17 | \( 1 - 6.97e9T^{2} \) |
| 19 | \( 1 + 2.58e5T + 1.69e10T^{2} \) |
| 23 | \( 1 + (3.91e10 + 6.78e10i)T^{2} \) |
| 29 | \( 1 + (2.50e11 - 4.33e11i)T^{2} \) |
| 31 | \( 1 + (-9.04e5 + 1.56e6i)T + (-4.26e11 - 7.38e11i)T^{2} \) |
| 37 | \( 1 - 5.03e5T + 3.51e12T^{2} \) |
| 41 | \( 1 + (3.99e12 + 6.91e12i)T^{2} \) |
| 43 | \( 1 + (1.74e6 + 3.02e6i)T + (-5.84e12 + 1.01e13i)T^{2} \) |
| 47 | \( 1 + (1.19e13 - 2.06e13i)T^{2} \) |
| 53 | \( 1 - 6.22e13T^{2} \) |
| 59 | \( 1 + (7.34e13 + 1.27e14i)T^{2} \) |
| 61 | \( 1 + (-1.19e7 - 2.06e7i)T + (-9.58e13 + 1.66e14i)T^{2} \) |
| 67 | \( 1 + (-2.71e6 + 4.69e6i)T + (-2.03e14 - 3.51e14i)T^{2} \) |
| 71 | \( 1 - 6.45e14T^{2} \) |
| 73 | \( 1 - 1.61e7T + 8.06e14T^{2} \) |
| 79 | \( 1 + (-9.44e6 - 1.63e7i)T + (-7.58e14 + 1.31e15i)T^{2} \) |
| 83 | \( 1 + (1.12e15 - 1.95e15i)T^{2} \) |
| 89 | \( 1 - 3.93e15T^{2} \) |
| 97 | \( 1 + (8.84e7 + 1.53e8i)T + (-3.91e15 + 6.78e15i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.970639523467609981163765214133, −8.572922088094647786347454738559, −7.75469643550362731630167330637, −6.65822614359063744180628316725, −5.95636965011914742950809370120, −4.36156935697647920845673272182, −3.70005543371782148132541209702, −2.41460745194497708422375330832, −0.837357573385050783306262478861, −0.11582544503056237028526641737,
1.64287966455978582990305820425, 2.61724699338215760435855471286, 3.77105350827286726438428774383, 5.01241724588277672009945684442, 6.22715716114645624361080937818, 6.65203404376633550482421383891, 8.306940146030782519466177975796, 8.925777560684071260822647622830, 9.723228351268854373709354098227, 10.87659784576660504178985328767