L(s) = 1 | + (−1.64 + 2.85i)2-s + (−1.42 − 2.46i)4-s + (−10.8 + 18.8i)5-s + (1.08 + 18.4i)7-s − 16.9·8-s + (−35.7 − 61.9i)10-s + (20.9 + 36.3i)11-s + 46.0·13-s + (−54.5 − 27.3i)14-s + (39.3 − 68.1i)16-s + (−1.00 − 1.74i)17-s + (−36.6 + 63.4i)19-s + 61.7·20-s − 138.·22-s + (12.0 − 20.9i)23-s + ⋯ |
L(s) = 1 | + (−0.582 + 1.00i)2-s + (−0.177 − 0.307i)4-s + (−0.971 + 1.68i)5-s + (0.0587 + 0.998i)7-s − 0.750·8-s + (−1.13 − 1.95i)10-s + (0.575 + 0.996i)11-s + 0.982·13-s + (−1.04 − 0.521i)14-s + (0.614 − 1.06i)16-s + (−0.0143 − 0.0249i)17-s + (−0.442 + 0.765i)19-s + 0.690·20-s − 1.33·22-s + (0.109 − 0.189i)23-s + ⋯ |
Λ(s)=(=(189s/2ΓC(s)L(s)(−0.390+0.920i)Λ(4−s)
Λ(s)=(=(189s/2ΓC(s+3/2)L(s)(−0.390+0.920i)Λ(1−s)
Degree: |
2 |
Conductor: |
189
= 33⋅7
|
Sign: |
−0.390+0.920i
|
Analytic conductor: |
11.1513 |
Root analytic conductor: |
3.33936 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ189(163,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 189, ( :3/2), −0.390+0.920i)
|
Particular Values
L(2) |
≈ |
0.473036−0.714706i |
L(21) |
≈ |
0.473036−0.714706i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(−1.08−18.4i)T |
good | 2 | 1+(1.64−2.85i)T+(−4−6.92i)T2 |
| 5 | 1+(10.8−18.8i)T+(−62.5−108.i)T2 |
| 11 | 1+(−20.9−36.3i)T+(−665.5+1.15e3i)T2 |
| 13 | 1−46.0T+2.19e3T2 |
| 17 | 1+(1.00+1.74i)T+(−2.45e3+4.25e3i)T2 |
| 19 | 1+(36.6−63.4i)T+(−3.42e3−5.94e3i)T2 |
| 23 | 1+(−12.0+20.9i)T+(−6.08e3−1.05e4i)T2 |
| 29 | 1−90.7T+2.43e4T2 |
| 31 | 1+(26.6+46.0i)T+(−1.48e4+2.57e4i)T2 |
| 37 | 1+(33.9−58.7i)T+(−2.53e4−4.38e4i)T2 |
| 41 | 1−341.T+6.89e4T2 |
| 43 | 1−509.T+7.95e4T2 |
| 47 | 1+(19.2−33.3i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1+(194.+337.i)T+(−7.44e4+1.28e5i)T2 |
| 59 | 1+(225.+390.i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(112.−195.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(−386.−668.i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1+962.T+3.57e5T2 |
| 73 | 1+(−526.−912.i)T+(−1.94e5+3.36e5i)T2 |
| 79 | 1+(16.7−29.0i)T+(−2.46e5−4.26e5i)T2 |
| 83 | 1−446.T+5.71e5T2 |
| 89 | 1+(244.−424.i)T+(−3.52e5−6.10e5i)T2 |
| 97 | 1−460.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.50156371498003426183814060290, −11.74118144847326328156664238712, −10.83670055441241586002439381129, −9.602070183351491963083685606801, −8.447638826174167158924358938957, −7.63394452691974640066024732026, −6.69510037953115278636857381763, −6.01707208465473661608137347334, −3.92897868005878531710629513532, −2.62565952314023300130763645709,
0.53717759926566335932561418132, 1.22421567805574216186788462594, 3.51180788564657472370923776728, 4.46007006849155139650222886666, 6.04672004892247760558777528801, 7.73791995455149475669257034367, 8.779424817691257467898941700150, 9.208407024993750800777556320342, 10.77825016796798550169995450953, 11.25898807366775336867792372209