L(s) = 1 | + (−1.64 − 2.85i)2-s + (−1.42 + 2.46i)4-s + (−10.8 − 18.8i)5-s + (1.08 − 18.4i)7-s − 16.9·8-s + (−35.7 + 61.9i)10-s + (20.9 − 36.3i)11-s + 46.0·13-s + (−54.5 + 27.3i)14-s + (39.3 + 68.1i)16-s + (−1.00 + 1.74i)17-s + (−36.6 − 63.4i)19-s + 61.7·20-s − 138.·22-s + (12.0 + 20.9i)23-s + ⋯ |
L(s) = 1 | + (−0.582 − 1.00i)2-s + (−0.177 + 0.307i)4-s + (−0.971 − 1.68i)5-s + (0.0587 − 0.998i)7-s − 0.750·8-s + (−1.13 + 1.95i)10-s + (0.575 − 0.996i)11-s + 0.982·13-s + (−1.04 + 0.521i)14-s + (0.614 + 1.06i)16-s + (−0.0143 + 0.0249i)17-s + (−0.442 − 0.765i)19-s + 0.690·20-s − 1.33·22-s + (0.109 + 0.189i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.390 - 0.920i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.390 - 0.920i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.473036 + 0.714706i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.473036 + 0.714706i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-1.08 + 18.4i)T \) |
good | 2 | \( 1 + (1.64 + 2.85i)T + (-4 + 6.92i)T^{2} \) |
| 5 | \( 1 + (10.8 + 18.8i)T + (-62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (-20.9 + 36.3i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 - 46.0T + 2.19e3T^{2} \) |
| 17 | \( 1 + (1.00 - 1.74i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (36.6 + 63.4i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-12.0 - 20.9i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 - 90.7T + 2.43e4T^{2} \) |
| 31 | \( 1 + (26.6 - 46.0i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (33.9 + 58.7i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 - 341.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 509.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (19.2 + 33.3i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (194. - 337. i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (225. - 390. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (112. + 195. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-386. + 668. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 962.T + 3.57e5T^{2} \) |
| 73 | \( 1 + (-526. + 912. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (16.7 + 29.0i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 - 446.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (244. + 424. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 - 460.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.25898807366775336867792372209, −10.77825016796798550169995450953, −9.208407024993750800777556320342, −8.779424817691257467898941700150, −7.73791995455149475669257034367, −6.04672004892247760558777528801, −4.46007006849155139650222886666, −3.51180788564657472370923776728, −1.22421567805574216186788462594, −0.53717759926566335932561418132,
2.62565952314023300130763645709, 3.92897868005878531710629513532, 6.01707208465473661608137347334, 6.69510037953115278636857381763, 7.63394452691974640066024732026, 8.447638826174167158924358938957, 9.602070183351491963083685606801, 10.83670055441241586002439381129, 11.74118144847326328156664238712, 12.50156371498003426183814060290